【题目】如图, 中,,,为线段上一动点(不与点,重合),连接,作,交线段于.以下四个结论:
①;
②当为中点时;
③当时;
④当为等腰三角形时.
其中正确的结论是_________(把你认为正确结论的序号都填上)
【答案】①②③
【解析】
利用三角形外角的性质可判断①;利用等腰三角形三线合一的性质得到∠ADC=90,求得∠EDC=50,可判断②;利用三角形内角和定理求得∠DAC=70=∠DEA,证得DA=DE,可证得,可判断③;当为等腰三角形可分类讨论,可判断④.
①∠ADC是的一个外角,
∴∠ADC =∠B+∠BAD=40+∠BAD,
又∠ADC =40+∠CDE,
∴∠CDE=∠BAD,故①正确;
②∵,为中点,
∴,AD⊥BC,
∴∠ADC=90,
∴∠EDC=90,
∴,
∴DE⊥AC,故②正确;
③当时
由①得∠CDE=∠BAD,
在中,∠DAC=,
在中,∠AED=,
∴DA=ED,
在和中,,
∴,
∴,故③正确;
④当AD=AE时,∠AED=∠ADE=40°,
∴∠AED=∠C=40°,
则DE∥BC,不符合题意舍去;
当AD=ED时,∠DAE=∠DEA,
同③,;
当AE=DE时,∠DAE=∠ADE=40°,
∴∠BAD,
∴当△ADE是等腰三角形时,
∴∠BAD的度数为30°或60°,故④错误;
综上,①②③正确,
故答案为:①②③
科目:初中数学 来源: 题型:
【题目】我市某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:
(1)根据图示求出表中的、、
平均数 | 中位数 | 众数 | |
九(1) | 85 | ||
九(2) | 85 | 100 |
, , .
(2)小明同学已经算出了九(2)班复赛成绩的方差:
,请你求出九(1)班复赛成绩的方差;
(3)根据(1)、(2)中计算结果,分析哪个班级的复赛成绩较好?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1)若点C在优弧BD上,求∠ACD的大小;
(2)若点C在劣弧BD上,直接写出∠ACD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在中,内角与外角的平分线相交于点,,交于,交于,连接、,下列结论:①;②;③垂直平分;④.其中正确的是( )
A. ①②④B. ①③④C. ②③④D. ①③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com