分析 (1)用待定系数法求出抛物线解析式;
(2)先确定出PA+PB最小时的点P的位置,再确定出直线AB'的解析式即可;
(3)依次求出△AOB和△AOD的面积即可.
解答 解:(1)∵抛物线的顶点为A(1,4),
∴设抛物线的解析式y=a(x-1)2+4,
把点B(0,3)代入得,a+4=3,
解得a=-1,
∴抛物线的解析式为y=-(x-1)2+4;
(2)
如图,
作点B关于x轴的对称点B′的坐标为(0,-3),
连接AB′与x轴的交点即为点P,
设直线AB′的解析式为y=kx+b(k≠0),
则4=k+b-3=b
解得k=7 b=-3
∴直线AB′的解析式为y=7x-3,
令y=0,则7x-3=0,解得x=$\frac{3}{7}$
所以,当PA+PB的值最小时的点P的坐标为($\frac{3}{7}$,0).
(3)连接AO.
当y=0时,-(x-1)2+4=0,
解得x1=3,x2=-1,
∴抛物线与x轴的交点坐标为D(3,0),C(-1,0),
∴S四边形ABOD=S△AOB+S△AOD=7.5
点评 此题是二次函数综合题,主要考查了待定系数法,极值问题,直线交点的确定,三角形的面积的计算,用待定系数法求直线是解本题的关键,确定点P的位置是解本题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com