精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,ABOAx轴于点B,且OA=AB.

(1)求双曲线的解析式;

(2)求点C的坐标,并直接写出y1<y2x的取值范围.

【答案】(1);(2)C(﹣1,﹣4),x的取值范围是x<﹣10<x<2.

【解析】1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=2x﹣2,可得A的坐标,从而得双曲线的解析式;

(2)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.

(1)∵点A在直线y1=2x﹣2上,

∴设A(x,2x﹣2),

AACOBC,

ABOA,且OA=AB,

OC=BC,

AC=OB=OC,

x=2x﹣2,

x=2,

A(2,2),

k=2×2=4,

(2)解得:

C(﹣1,﹣4),

由图象得:y1<y2x的取值范围是x<﹣10<x<2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,yx成反比例;如图所示,根据图中提供的信息,解答下列问题:

1)写出从药物释放开始,yx之间的两个函数解析式;

2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】―抛物线与x轴的交点是A(20)B(10),且经过点C(28)

(1)求该抛物线的解析式;

(2)求该抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本小题满分11分如图,已知抛物线的顶点D的坐标为(1),且与x轴交于AB两点,与y轴交于C点,A点的坐标为(40).P点是抛物线上的一个动点,且横坐标为m

(l)求抛物线所对应的二次函数的表达式;

(2)若动点P满足PAO不大于45°,求P点的横坐标m的取值范围;

(3)P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使QPO=BCO?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图,点在同一条直线上,连结DC

1)请判断的位置关系,并证明

2)若,求的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).

(1)求这个二次函数的解析式;

(2)B(2,﹣2)在这个函数图象上吗?

(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中函数 y kx y 的图象交于 A、B 两点 A y 轴的垂线交函数的图象于点 C,连接 BC,则ABC 的面积为(

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1中,,点在数轴-1处,点在数轴1处,,则数轴上点对应的数是

2)如图2,点是直线上的动点,过点垂直轴于点,点轴上的动点,当以为顶点的三角形为等腰直角三角形时点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为,格点三角形(顶点是网格线的交点的三角形)的顶点的坐标分别为

1)请在如图所示的网格内作出轴、轴;

2)请作出关于轴对称的(不写画法),并写出点的坐标;

3)求出关于轴对称的的面积.

查看答案和解析>>

同步练习册答案