【题目】【本小题满分11分】如图,已知抛物线的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.
(l)求抛物线所对应的二次函数的表达式;
(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;
(3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.
【答案】(1);(2)﹣4≤m≤0;(3)P(,)或P(,).
【解析】
试题(1)根据函数值相等的点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;
(2)根据等腰直角三角形的性质,可得射线AC、AD,根据角越小角的对边越小,可得PA在在射线AC与AD之间,根据解方程组,可得E点的横坐标,根据E、C点的横坐标,可得答案;
(3)分两种情况,P在第二象限和P在第三象限讨论.
试题解析:(1)由A、B点的函数值相等,得:A、B关于对称轴对称.A(4,0),对称轴是x=1,得:B(﹣2,0).将A、B、D点的坐标代入解析式,得:,解得:,抛物线所对应的二次函数的表达式;
(2)如图1作C点关于原点的对称点D,OC=OD=OA=4,∠OAC=∠DAO=45°,AP在射线AC与AD之间,∠PAO<45°,直线AD的解析式为,联立AD于抛物线,得:,解得x=﹣4或x=4,∵E点的横坐标是﹣4,C点的横坐标是0,P点的横坐标的取值范围是﹣4≤m≤0;
(3)存在P点,使∠QPO=∠BCO,①若点P在第二象限,如图2,设P(a,),由∠QPO=∠BCO,∠PQO=CBO=90°,∴△PQO∽△COB,∴,即=,化简,得,解得或(不符合题意,舍),∴=,∴P点坐标为(,);
②若点P在第三象限,如图3,由△PQO∽△COB,∴PQ:CO=OQ:OB,∵B(-2,0),C(0,-4),∴PQ=2QO,∴点P坐标为(m,),代入,得:,解得:,∵,∴,∴=,∴P的坐标为(,);
∴满足条件的点为P(,)或P(,).
科目:初中数学 来源: 题型:
【题目】已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为3.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE=_________;
(1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;
(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:
①请在图3中画出图形;
②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线交轴于点,交轴于点,以为边作正方形,请解决下列问题:
(1)求点和点的坐标;
(2)求直线的解析式;
(3)在直线上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象抛物线G经过(﹣5,0),(0,),(1,6)三点,直线l的解析式为y=2x﹣3
(1)求抛物线G的函数解析式;
(2)求证:抛物线G与直线L无公共点;
(3)若与l平行的直线y=2x+m与抛物线G只有一个公共点P,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是反比例函数的图象的一个分支.
比例系数的值是________;
写出该图象的另一个分支上的个点的坐标:________、________;
当在什么范围取值时,是小于的正数?
如果自变量取值范围为,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:
销售单价x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的销售量y(件) | … | 450 | 400 | 300 | 250 | … |
(1)直接写出y与x的函数关系式: .
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出y1<y2时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=2.5千米,CH=2千米,HB=1.5千米.
(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;
(2)求原来的路线AC的长.(精确到0.01)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com