精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC与△CDE都是等边三角形,B,C,D在一条直线上,连结B,E两点交AC于点M,连结A,D两点交CEN点.

(1)ADBE有什么数量关系,并证明你的结论.

(2)求证:CO平分∠BOD.

【答案】(1)证明见解析(2)证明见解析

【解析】

(1)根据等边三角形的性质得CA=CB,CD=CE,ACB=60°,DCE=60°,则∠ACE=60°,利用“SAS”可判断ACD≌△BCE;

(2)作CHBEH,CQADQ.利用全等三角形的对应边上的高相等,可得CH=CQ,再根据角平分线的判定定理即可解决问题.

(1)∵△ABCCDE都是等边三角形,

CA=CB,CD=CE,ACB=60°,DCE=60°,

∴∠ACE=60°,

∴∠ACD=BCE=120°,

ACDBCE中,CA=CB,ACD=BCE,CD=CE

∴△ACD≌△BCE(SAS),

AD=BE;

(2)作CHBEH,CQADQ,

∵△ACD≌△BCE,

CQ=CH,

CHBEH,CQADQ,

CO平分∠BOD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四边形ABCD中,A=C=90°,BE、DF分别是ABC、ADC的平分线.求证:

(1)、1+2=90°;(2)、BEDF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)2

(2)=﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有两点A,B
(1)尺规作图,在x轴上找一点C,使得AC+BC最小:(尺规作图,不写作法,保留作图痕迹);
(2)若A的坐标为(﹣2,1),B的坐标为(3,5)在x轴上找一点C,使得AC+BC最小,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y=kx经过点A(2,4),AB⊥x轴于点B.
(1)求该正比例函数的解析式;
(2)将△ABO绕点A逆时针旋转90°得到△ADC,求点C的坐标;
(3)试判断点C是否在直线y= x+1的图象上,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在解方程x+x﹣94)=35时,小明被难住.以下是小明、小丽、小飞同学的对话和解答过程,请你将其补充完整:

小明:你俩只要帮我讲讲解此方程第一步的想法、依据就可以了.

小丽:解此方程的第一步,我观察到含有括号,我认为应先_____,依据是_____,就可以考虑合并同类项了.

小明利用小丽的想法写出了完整的解答过程如下:

小飞:解此方程的第一步还可以这样想,我观察到此方程含分母,我认为应先_____,在方程两边都_____,依据是_____

小明利用小飞的想法写出了完整的解答过程如下:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A1 , A2 , A3 , …An是x轴上的点,且OA1=A1A2=A2A3=…=An1An=1,分别过点A1 , A2 , A3 , …An作x轴的垂线交反比例函数y= (x>0)的图象于点B1 , B2 , B3 , …Bn , 过点B2作B2P1⊥A1B1于点P1 , 过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1 , △B2P2B3的面积为S2…,△BnPnBn+1的面积为Sn , 则S1+S2+S3+…+Sn=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:

两边和其中一边的对角对应相等的两个三角形全等.

角的对称轴是角平分线

两边对应相等的两直角三角形全等

成轴对称的两图形一定全等

到线段两端距离相等的点在线段的垂直平分线上,

正确的有  个.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若线段上的一个点把这条线段分成12的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且ACCB12,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.

1)已知:如图2DE15cm,点PDE的三等分点,求DP的长.

2)已知,线段AB15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.

若点PQ同时出发,且当点P与点Q重合时,求t的值.

若点PQ同时出发,且当点P是线段AQ的三等分点时,求t的值.

查看答案和解析>>

同步练习册答案