【题目】如图,在△ABC中,AB=AC,点A在y轴上,点C在x轴上,BC⊥x轴,tan∠ACO=.延长AC到点D,过点D作DE⊥x轴于点G,且DG=GE,连接CE,反比例函数y=(k≠0)的图象经过点B,和CE交于点F,且CF:FE=2:1.若△ABE面积为6,则点D的坐标为_____.
【答案】(,﹣3).
【解析】
根据AB=AC,tan∠ACO=,设未知数表示点A、B、C的坐标,根据线段中垂线的性质得CE=CD,进而得到∠ECG=∠DCG=∠ACO,再根据tan∠ECG=tan∠ACO=,再设未知数表示出点E的坐标,进而求出CE的中点F的坐标,把点B、F的坐标代入反比例函数的关系式,进而得出两个未知数之间的关系,再根据=6,列方程求出未知数,进而确定点的坐标.
解:过点A作AM⊥BC,垂足为M,
∵AB=AC,
∴BM=CM,
∵tan∠ACO==.
∴设OA=2m,OC=3m,则BC=4m,因此点C(3m,0)、B(3m,4m),
∵DE⊥x轴于点G,且DG=GE,
∴CE=CD,
∴∠ECG=∠DCG=∠ACO,
∴tan∠ECG==tan∠ACO=,
设EG=2n,则CG=3n,因此点E(3m+3n,2n),
又∵CF:FE=2:1.即点F是CE的三等分点,
∴点F(3m+2n,n),
把B(3m,4m)和F(3m+2n,n)代入反比例函数y=得,
k=3m4m=(3m+2n)n,即(3m﹣2n)(3m+n)=0,
∵m>0,n>0,
∴n=m,
∴点E的坐标为(m,3m),
∵S△ABE=6=S梯形ABCO+S梯形BCGE﹣S梯形AOGE,
∴(2m+4m)×3m+(4m+3m)×m﹣(2m+3m)×m=6,
解得:m=1,
∴E(,3),
∴D(,﹣3)
故答案为:(,﹣3).
科目:初中数学 来源: 题型:
【题目】小明家的门框上装有一把防盗门锁(如图1),其平面结构图如图2所示,锁身可以看成由两条等弧,和矩形组成的,的圆心是倒锁按钮点.已知的弓形高,,.当锁柄绕着点顺时针旋转至位置时,门锁打开,此时直线与所在的圆相切,且,.
(1)求所在圆的半径;
(2)求线段的长度.(,结果精确到)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣4x+3.
(1)求该二次函数图象的顶点和对称轴;
(2)在所给坐标系中画出该二次函数的图象;
(3)根据图象直接写出方程x2﹣4x+3=0的根;
(4)根据图象写出当y<0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:
(1)求证:EF是△ABC外接圆的切线;
(2)若BC=5,sin∠ABC=,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交点C,抛物线过A,C两点,与x轴交于另一点B.
(1)求抛物线的解析式.
(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当时,求的值.
(3)点N是抛物线对称轴上一点,在(2)的条件下,若点E位于对称轴左侧,在抛物线上是否存在一点M,使以M,N,E,B为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】宣和中学图书馆今日购进甲、乙两种图书,每本甲种图书的进价比每本乙种图书的进价高20元,花780元购进甲种图书的数量与花540元购进乙种图书的数量相同.
(1)求甲、乙两种图书每本的进价分别是多少元;
(2)宣和中学购进甲、乙两种图书共70本,总购书费用不超过3950元,则最多购进甲种图书多少本.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织学生开展为贫困山区孩子捐书活动,要求捐赠的书籍类别为科普类、文学类、漫画类、哲学故事类、环保类,学校图书管理员对所捐赠的书籍随机抽查了部分进行统计,并对获取的数据进行了整理,根据整理结果,绘制了如图所示的两幅不完整的统计图.已知所统计的数据中,捐赠的哲学故事类书籍和文学类书籍的数量相同.请根据以上信息,解答下列问题:
(1)本次被抽查的书籍有_____册.
(2)补全条形统计图.
(3)若此次捐赠的书籍共1200册,请你估计所捐赠的科普类书籍有多少册.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.
(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;
(2)经调査,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润且尽快减少库存,每件应降价多少元?
(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com