【题目】如图,Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点D,交△ABC的外接圆于点E,过点E作EF⊥BC交BC的延长线于点F.请补全图形后完成下面的问题:
(1)求证:EF是△ABC外接圆的切线;
(2)若BC=5,sin∠ABC=,求EF的长.
【答案】(1)见解析 (2)6
【解析】
(1)根据已知条件得到△ABC的外接圆圆心O是斜边AB的中点.连接OE,根据等腰三角形的性质和角平分线的定义得到∠1=∠3.求得OE∥BF.于是得到结论;
(2)根据三角函数的定义得到.根据勾股定理得到AC=12.根据矩形的性质即可得到结论.
(1)补全图形如图所示,
∵△ABC是直角三角形,
∴△ABC的外接圆圆心O是斜边AB的中点.
连接OE,
∴OE=OB.
∴∠2=∠3,
∵BE平分∠ABC,
∴∠1=∠2,
∴∠1=∠3.
∴OE∥BF.
∵EF⊥BF,
∴EF⊥OE,
∴EF是△ABC外接圆的切线;
(2)在Rt△ABC中,BC=5,sin∠ABC=,
∴.
∵AC2+BC2=AB2,
∴AC=12.
∵∠ACF=∠CFE=∠FEH=90°,
∴四边形CFEH是矩形.
∴EF=HC,∠EHC=90°.
∴EF=HC=AC=6.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:
①二次函数y=ax2+bx+c的最小值为﹣4a;
②若﹣1≤x2≤4,则0≤y2≤5a;
③若y2>y1,则x2>4;
④一元二次方程cx2+bx+a=0的两个根为﹣1和
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,AC=BC,D是BC上一点,连接AD,将线段AD绕着点A逆时针旋转,使点D的对应点E在BC的延长线上。过点E作EF⊥AD垂足为点G,
(1)求证:FE=AE;
(2)填空:=__________
(3)若,求的值(用含k的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,⊙O的直径AB和弦CD相交于点E,且点B是劣弧DF的中点.
(1)求证:△EBD≌△EBF;
(2)已知AE=1,EB=5,∠DEB=30°,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合,DF=8.
(1)若P是BC上的一个动点,当PA=DF时,求此时∠PAB的度数;
(2)将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.
①探求△CDO的形状,并说明理由;
②在图①中,若P是BC的中点,连接FP,将等腰直角三角板ABC绕点B顺时针旋转,当旋转角α= 时,FP长度最大,最大值为 (直接写出答案即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:
;;方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为;若点在该抛物线上,则.
其中正确的有
A. 5个 B. 4个 C. 3个 D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点A在y轴上,点C在x轴上,BC⊥x轴,tan∠ACO=.延长AC到点D,过点D作DE⊥x轴于点G,且DG=GE,连接CE,反比例函数y=(k≠0)的图象经过点B,和CE交于点F,且CF:FE=2:1.若△ABE面积为6,则点D的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.
(1)试说明不论x为何值时,总有△QBM∽△ABC;
(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;
(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com