精英家教网 > 初中数学 > 题目详情

【题目】如图,平行于x轴的直线AC分别交函数 y=x(x≥0) y= x(x≥0)的图象于 B,C两点过点Cy轴的平行线交y=x(x≥0)的图象于点D,直线DEAC y=x(x≥0)的图象于点E,则=(

A. B. 1 C. D. 3﹣

【答案】D

【解析】

设点A的纵坐标为b, 可得点B的坐标为(,b), 同理可得点C的坐标为(b,b),

D点坐标(b,3b),E点坐标(,3b),可得的值.

:设点A的纵坐标为b, 因为点B的图象上, 所以其横坐标满足=b, 根据图象可知点B的坐标为(,b), 同理可得点C的坐标为(b,b),

所以点D的横坐标为b,因为点D的图象上, 故可得

y==3b,所以点E的纵坐标为3b,

因为点E的图象上, =3b,

因为点E在第一象限, 可得E点坐标为(,3b),

DE==,AB=

所以=

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC=+1D=60°,则两条斜边的交点E到直角边BC的距离是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(7分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:.结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作△ADE,使ADAE,∠DAE=∠BAC,连结CE

1)如图1,当点D在线段BC上时,如果∠BAC90°,则∠BCE   °.

2)设∠BACα,∠BCEβ

①如图2,当点D在线段BC上移动时,αβ之间有怎样的数量关系?请说明理由.

②当点D在直线BC上移动时,αβ之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y(2m+1)x+m3

(1)若函数图象经过原点,求m的值;

(2)若函数图象在y轴的截距为﹣2,求m的值;

(3)若函数的图象平行直线y3x3,求m的值;

(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,20173月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.

(1)求该快递公司投递快递总件数的月平均增长率

(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成20176月份的快递投递任务?如果不能,请问至少需要增加几名业务员?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)

关系:①ADBCAB=CD③∠A=C④∠B+C=180°.

已知:在四边形ABCD中,            

求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图甲,在△ABC中,AE平分∠BAC(∠C>∠B),F为AE上一点,且FD⊥BC于D.

(1)试说明:∠EFD=(∠C﹣∠B);

(2)当F在AE的延长线上时,如图乙,其余条件不变,(1)中的结论还成立吗?请说明理由.

查看答案和解析>>

同步练习册答案