精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为( )

A.44°
B.34°
C.46°
D.56°

【答案】B
【解析】解:连接DC,

∵AD为直径,

∴∠ACD=90°,

∵∠CAD=56°,

∴∠D=90°﹣56°=34°,

∴∠B=∠D=34°,

所以答案是:B.

【考点精析】掌握三角形的内角和外角和圆周角定理是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点DEF分别是ABBCCA的中点,AH是边BC上的高.

1)试判断线段DEFH之间的数量关系,并说明理由;

2)求证:∠DHF=DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点F是等边△ABC边CA延长线上一点,点D是线段BF上一点,且BC=CD,CD交AB于点E,若AE=6,CE=14,则AF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为8,点E为正方形边上一点,连接BE,且BE=10,则AE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.

(1)猜想与计算:
邻边长分别为3和5的平行四边形是阶准菱形;已知ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出ABCD是阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读并回答:

科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线射向一个水平镜面后被反射,此时

①由条件可知:的大小关系是____________,理由是____________的大小关系是____________

②反射光线的位置关系是____________,理由是____________

2)解决问题:

如图2,一束光线射到平面镜上,被反射到平面镜上,又被镜反射,若反射出的光线平行于,且,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.

(1)求证:四边形ABEF为菱形;

(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,O为AC中点,点P在AC上,若OP= ,tan∠A= ,∠B=120°,BC=2 ,则AP=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.

(1)小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若摸到黑球小明获胜,摸到黄球小红获胜,这个游戏对双方公平吗?请说明你的理由;

(2)现在裁判想从袋中取出若干个黑球,并放入相同数量的黄球,使得这个游戏对双方公平,问取出了多少黑球?

查看答案和解析>>

同步练习册答案