精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,点 的坐标为,以 A 为顶点的的两边始终与 轴交于 两点(左面),且

(1)如图,连接,当 时,试说明:

(2)过点 轴,垂足为,当时,将沿所在直线翻折,翻折后边轴于点 ,求点 的坐标.

【答案】(1)见解析;(2)M点坐标为(0,3)M点坐标为(0—6).

【解析】

试题(1)根据题目中角的度数,求出∠BAO=∠ABC=67.5°,利用等腰三角形的性质即可得出结论;

(2)根据题意,可知要分两种情况,即当点C在点D右侧时或当点C在点D左侧时,利用勾股定理即可得出M点坐标.

试题解析:

1∵AB=AC∠BAC=45°∴∠ABC=∠ACB= 67.5°.

过点AAE⊥OBE,则△AEO是等腰直角三角形,∠EAO=45°.

∵AB=ACAE⊥OB

∴∠BAE=∠BAC=22.5°.

∴∠BAO=67.5°=∠ABC

∴OA=OB

2)设OM=x.

当点C在点D右侧时,连接CM,过点AAF⊥y轴于点F

∠BAM=∠DAF=90°可知:∠BAD=∠MAF

∵AD=AF=6∠BDA=∠MFA=90°

∴△BAD≌△MAF.

∴BD=FM=6—x.

∵AC=AC∠BAC=∠MAC

∴△BAC≌△MAC.

∴BC=CM=8—x.

Rt△COM中,由勾股定理得:OC2+OM2=CM2,即

解得:x=3∴M点坐标为(0,3.

当点C在点D左侧时,连接CM,过点AAF⊥y轴于点F

同理,△BAD≌△MAF∴BD=FM=6+x.

同理,△BAC≌△MAC∴BC=CM=4+x.

Rt△COM中,由勾股定理得:OC2+OM2=CM2,即

解得:x=6∴M点坐标为(0—6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.
(1)王师傅单独整理这批实验器材需要多少分钟?
(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求回答问题:
(1)【提出问题】
已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;

(2)【类比探究】
在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;

(3)【拓展迁移】
在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,若AB=4,BC=6,则FD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)先解不等式组 ,然后判断 是不是此不等式组的一个整数解.
(2)化简求值:先化简 ,再从1,2,3中选取一个适当的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】满足下列条件的△ABC不是直角三角形的是()

A. BC=1,AC=2,AB=

B. BC=1,AC=2,AB=

C. BC:AC:AB=3:4:5

D. ∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.

(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?

(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,ACB=90°,D为BC的中点,DEAB,垂足为E,过点B作BFAC交DE的延长线于点F,连接CF.

(1)求证:ADCF

(2)连接AF,试判断ACF的形状,并说明理由.

查看答案和解析>>

同步练习册答案