【题目】如图,在边长为1的正方形网格中,A(2,4),B(4,1),C(-3,4)
(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标.
(2)直接写出线段AB平移至线段CD处所扫过的面积.
(3)平移线段AB,使其两端点都在坐标轴上,则点A的坐标为
【答案】(1)(-1,1);(2)15;(3)(0,3)或(-2,0)
【解析】
(1)根据点A与点C的坐标得出坐标变化规律,从而得到点D的坐标;
(2)根据平移的性质得出ABDC是平行四边形,根据平行四边形的面积公式列式计算即可;
(3)分两种情况:①平移后A的对应点在y轴上,B的对应点在x轴上;②平移后A的对应点在x轴上,B的对应点在y轴上.
(1)∵平移线段AB到线段CD,使点A与点C重合,A(2,4),C(-3,4),
∴坐标变化规律是:横坐标减去5,纵坐标不变,∵B(4,1),∴点D的坐标为(-1,1);
(2)∵平移线段AB到线段CD,∴AB∥CD,AB=CD,
∴四边形ABDC是平行四边形,∴线段AB平移至线段CD处所扫过的面积为:5×3=15;
(3)分两种情况:①如果平移后A的对应点在y轴上,B的对应点在x轴上,
那么坐标变化规律是:横坐标减去2,纵坐标减去1,
∵A(2,4),∴平移后点A的坐标为(0,3)
②如果平移后A的对应点在x轴上,B的对应点在y轴上,
那么坐标变化规律是:横坐标减去4,纵坐标减去4,∵A(2,4),∴平移后点的坐标为(-2,0);
故答案为(0,3)或(-2,0).
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程.
(1)x2﹣x﹣1=0; (2)x2﹣2x=2x+1;
(3)x(x﹣2)﹣3x2=﹣1; (4)(x+3)2=(1﹣2x)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的是____________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2018A2019B2019,则点B2019的纵坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家新开发的一种摩托车如图所示,它的大灯射出的光线、与地面的夹角分别为和,大灯离地面距离.
该车大灯照亮地面的宽度约是多少(不考虑其它因素)?
一般正常人从发现危险到做出刹车动作的反应时间是,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以的速度驾驶该车,从到摩托车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,A3的坐标是_____,则An的坐标是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上
(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求点B的坐标.
(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴 于E,求证:BD = 2AE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+3过等腰Rt△BOC的两顶点B、C,且与x轴交于点A(﹣1,0).
(1)求抛物线的解析式;
(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,求BN的长度;
(3)P为线段BC上方的抛物线上的一个动点,P到直线BC的距离是否存在最大值?若存在,请求出这个最大值的大小以及此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com