精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DGBF,给出以下结论:

①△DAG≌△DFG②BG=2AG③SDGF=120④SBEF=,其中所有正确结论有:______

【答案】①②④

【解析】

根据直角三角形的HL全等判定方法,即得全等;

先设,进而将三边用含的式子表示,再根据勾股定理列出方程求解即得;根据折叠的性质及正方形的性质得出,再根据全等的性质得出,最后即可算出

先计算出,再根据 即得

解:如图,由折叠可知,DF=DC=DA∠DFE=∠C=90°

∴∠DFG=∠A=90°

Rt△ADGRt△FDG中,

∴Rt△ADG≌Rt△FDGHL),故正确;

正方形边长是12

∴BE=EC=EF=6

AG=FG=x,则EG=x+6BG=12-x

由勾股定理得:EG2=BE2+BG2

即:(x+62=62+12-x2

解得:x=4

∴AG=GF=4BG=8BG=2AG,故正确;

∵GF=4DF=AB=12

故③错误;

∵BG=8BE=6

EG=EF+GF=10

∴SBEF=SGBE=×24=,故正确.

故答案为:①②④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于点DDEABE.若△ADE的周长为8cmAB_____ cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在任意四边形ABCD中,MNPQ分别是ABBCCDDA上的点,对于四边形MNPQ的形状,以下结论中,错误的是  

A. MNPQ是各边中点,四边MNPQ一定为平行四边形

B. MNPQ是各边中点,且时,四边形MNPQ为正方形

C. MNPQ是各边中点,且时,四边形MNPQ为菱形

D. MNPQ是各边中点,且时,四边形MNPQ为矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ADBCABAC,点EBC的中点,AEBD交于点F,且FAE的中点.

(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC4AB5,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EAD上一点,连接BEFBE中点,且AF=BF

1)求证:四边形ABCD为矩形;

2)过点FFGBE,垂足为F,交BC于点G,若BE=BCSBFG=5CD=4,求CG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=-

(1)将y=-+x+用配方法化为y=a(x-h)2+k的形式;

(2)求该函数图象与两坐标轴交点的坐标;

(3)画出该函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+ba≠0)的图象与反比例函数k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tanDCO=过点A作AEx轴于点E,若点C是OE的中点,且点A的横坐标为﹣4.

(1)求该反比例函数和一次函数的解析式;

(2)连接ED,求ADE的面积.

查看答案和解析>>

同步练习册答案