【题目】如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象相交于A,B两点,与x轴,y轴分别交于C,D两点,tan∠DCO=,过点A作AE⊥x轴于点E,若点C是OE的中点,且点A的横坐标为﹣4.,
(1)求该反比例函数和一次函数的解析式;
(2)连接ED,求△ADE的面积.
【答案】(1)y=﹣x﹣3,y=﹣;(2)S△ADE= 6.
【解析】试题分析:(1)根据题意求得OE=4,OC=2,Rt△COD中,tan∠DCO=
,OD=3,即可得到A(-4,3),D(0,-3),C(-2,0),运用待定系数法即可求得反比例函数与一次函数的解析式;
(2)求得两个三角形的面积,然后根据S△ADE=S△ACE+S△DCE即可求得.
试题解析:
(1)∵AE⊥x轴于点E,点C是OE的中点,且点A的横坐标为﹣4,
∴OE=4,OC=2,
∵Rt△COD中,tan∠DCO=,
∴OD=3,
∴A(﹣4,3),
∴D(0,﹣3),C(﹣2,0),
∵直线y=ax+b(a≠0)与x轴、y轴分别交于C、D两点,
∴ ,解得 ,
∴一次函数的解析式为y=﹣x﹣3,
把点A的坐标(﹣4,3)代入,可得
3= ,解得k=﹣12,
∴A(﹣2,3),
∴反比例函数解析式为y=﹣;
(2)S△ADE=S△ACE+S△DCE=ECAE+ECOD=×2×3+=6.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE对折至△DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:
①△DAG≌△DFG:②BG=2AG;③S△DGF=120;④S△BEF=,其中所有正确结论有:______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(k为常数,且k≠0)的图象x经过点A(1,4),B(2,m).
(1)求反比例函数的解析式及B点的坐标;
(2)在y轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,斜坡AB坡度为1:2.4,长度为52米,在坡顶B所在的平台上有一座高楼EF,已知在A处测得楼顶F的仰角为60°,在B处测得楼顶F的仰角为77°,则高楼EF的高度是( )(精确到米,参考数据:sin77°≈0.97,tan77°≈4.33,≈1.73)
A. 125米 B. 105米 C. 85米 D. 65米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个长为4cm,宽为3cm的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板点A位置的变化为A→Al→A2,其中第二次翻滚被面上一小木块挡住,使木板与桌面成30°的角,则点A滚到A2位置时共走过的路径长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,8),点B的坐标为(10,0),点E是BC边上一点,把长方形AOBC沿AE翻折后,C点恰好落在x轴上点F处.
(1)求点E、F的坐标;
(2)求AF所在直线的函数关系式;
(3)在x轴上求一点P,使△PAF成为以AF为腰的等腰三角形,请直接写出所有符合条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形置于平面直角坐标系中,在轴上,在轴上,点的坐标为,对角线与相交于点,是第一象限内一点.
(1)如图1,若,,试判断四边形的形状,并说明理由;
(2)如图2,当点使得时,求证:;
(3)在(2)的条件下,如果与恰好相等,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com