精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点上的动点(不与重合),过点

于点.以为直径作,并在内作内接矩形,令

用含的代数式表示的面积

为何值时,与直线相切?

【答案】时,相切.

【解析】(1)由△AMN∽△ABC得出AN,又S△AMN=S△MNP,求得△AMN的面积即可.

(2)设直线BC与⊙O相切于点D,连接AO,OD,并过点M作MQ⊥BC于Q,由(1)中△AMN∽△ABC得,则求得MN、OD,再证△BMQ∽△BCA,得,代入求得x的值.

,即

(2)如图,设直线BC与⊙O相切于点D,连接AO,OD.

中,

,即

过点,则

中,是公共角,

,即

解得

解得,即当时,相切.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC,∠A=36°,AC的垂直平分线MNABD,ACM,以下结论:

①△BCD是等腰三角形;②射线CD是∠ACB的角平分线;③△BCD的周长CBCD=AB+BC;④△ADM≌△BCD。

正确的有( )

A. ①② B. ①③ C. ①②③ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠BAC=60°,点0是△ABC内一点,△AB0△ACD,连接OD.

(1)求证△AOD为等边三角形。

(2)如图2,连接OC,若∠BOC=130°,∠AOB=.

①求∠OCD的度数

②当△OCD是等腰三角形时,求∠的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2-6ax+6(a≠0)x轴交于点A(8,0),与y轴交于点B,在X轴上有一动点E(m,0)(0m8),过点Ex轴的垂线交直线AB于点N,交抛物线于点P,过点PPMAB于点M

)分别求出直线AB和抛物线的函数表达式;

)设PMN的面积为S1AEN的面积为S2,若S1S2=3625,求m的值;

)如图2,在()条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°α90°),连接EAEB

①在x轴上找一点Q,使OQE∽△OEA,并求出Q点的坐标;

②求BE+AE'的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中:

两条直线相交只有一个交点;

两条直线不是一定有公共点;

直线与直线是两条不同的直线;

两条不同的直线不能有两个或更多公共交点.

其中正确的是(

A. (1)(2) B. (1)(4) C. (1)(2)(4) D. (2)(3)(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点Cx轴的正半轴上,直线ACy轴于点M,AB边交y轴于点H,连接BM.

(1)菱形ABCO的边长   

(2)求直线AC的解析式;

(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设PMB的面积为S(S≠0),点P的运动时间为t秒,

①当0<t<时,求St之间的函数关系式;

②在点P运动过程中,当S=3,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,ABACBC6.点P射线BA上一点,点Q是AC的延长线上一点,且BPCQ,连接PQ,与直线BC相交于点D.

(1)如图①,当点P为AB的中点时,求CD的长;

(2)如图②,过点P作直线BC的垂线,垂足为E,当点P,Q分别在射线BA和AC的延长线上任意地移动过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,在直角坐标系中,已知点A-30),B04),AB=5,对OAB连续做旋转变换,依次得到1234,则2017的直角顶点的坐标为______

查看答案和解析>>

同步练习册答案