【题目】如图1,在长方形中,BC=3,动点从出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点的运动时间为
(1)当P点在线段BC上且不与C点重合时,若直线PB’与直线CD相交于点M,且∠PAM=45°,试求:AB的长
(2)若AB=4
①如图2,当点B’落在AC上时,显然△PCB’是直角三角形,求此时t的值
②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由
【答案】(1)AB的长为3;(2)①;②t的值为或或4.
【解析】
(1)如图所示,延长与CD交于M,连接AM,用角角边证明,可推出AB=BC=3.
(2)①在Rt△中,找出边长利用勾股定理建立方程求解;
②分三种情况讨论:,,,分别作出相应的图形,在中,分别找出边长,利用勾股定理建立方程求解.
(1)如图所示,延长与CD交于M,连接AM,
由折叠的性质可知,,
∵,,
∴
在和中,
∴≌(AAS)
∴
又∵ABCD为矩形,∴AD=BC=3,
∴AB=3
(2)①在Rt△ABC中,
∵点P点的运动时间为t,速度为1,∴BP=t,
,,,
在Rt△中,由勾股定理有,即,解得.
②当,如下图所示,
∵四边形ABCD为矩形,∴AD=BC=3,CD=AB=4,
有折叠性质有,在Rt△中,
,
∴
在Rt△中,,
,即,解得
当∠=90°时,如下图所示,
由折叠可得,
在Rt△中,
在Rt△中,,,
,即,解得
当=90°时,如下图所示,根据折叠易得四边形为正方形,∴PB=AB=4
综上,满足题意的t的值为或或4.
科目:初中数学 来源: 题型:
【题目】如图,点E, F在直线AC上,DF=BE, ∠AFD=∠CEB,下列条件中不能判断△ADF≌△CBE的是( )
A.∠D=∠BB.AD=CBC.AE=CFD.AD// BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.
(1)求证:△ABE≌△AD′F;
(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线是第一、三象限的角平分线.
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:___________、___________;
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为___________(不必证明);
(3)已知两点、,试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,求QD+QE的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读、思考、解决问题:
(1)如图(1)两个函数和的图象交于点,的坐标是否满足这两个函数式?即是方程的解吗?是方程的解吗?答: ① (是、不是)这就是说:函数和图象的交点坐标 ② (是、不是)方程组的解;反之,方程组的解 ③ (是、不是)函数和图象的交点坐标.
(2)根据图(2)写出方程组的解是:____________
(3)已知两个一次函数和.
①求这两个函数图象的交点坐标;
②在图(3)的坐标系中画出这两个函数的图象
③根据图象写出当时,的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,∠A=140°,∠D=80°.
(1)如图1,若∠B=∠C,试求出∠C的度数;
(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.
(1)求证:AP=AO;
(2)求证:PE⊥AO.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com