【题目】如图,在每个小正方形边长为1的网格中,点A,点C均落在格点上,点B为中点.
(Ⅰ)计算AB的长等于_____;
(Ⅱ)若点P,Q分别为线段BC,AC上的动点,且BP=CQ,请在如图所示的网格中,用无刻度的直尺,画出当PQ最短时,点P,Q的位置,并简要说明画图方法(不要求证明)_____.
【答案】 取BC的中点P,在AC上截取AQ=AC,线段PQ即为所求
【解析】试题分析:(Ⅰ)利用勾股定理计算即可;
(2)设BP=CQ=x,由BC==,推出PC=﹣x,在Rt△PCQ中,PQ==,对于函数y=2x2﹣3x+,当x=﹣=时,y有最小值,此时PQ的值最小,此时PC=PB=CQ=AC,取BC的中点P,在AC上截取AQ=AC,图中PQ即为所求.
解:(Ⅰ)由图象可知AB==.
(Ⅱ)设BP=CQ=x,
∵BC==,
∴PC=﹣x,
在Rt△PCQ中,PQ==,
对于函数y=2x2﹣3x+,当x=﹣=时,y有最小值,此时PQ的值最小,
此时PC=PB=CQ=AC.取BC的中点P,在AC上截取AQ=AC,图中PQ即为所求.
故答案为:取BC的中点P,在AC上截取AQ=AC,线段PQ即为所求.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高。
(1)求证:AD垂直平分EF。
(2)若AB+AC=16,S△ABC=24,∠EDF=120°,求AD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题的个数有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB交BC于点D,OE∥AC交BC于点E.
(1)试判断△ODE的形状,并说明你的理由;
(2)若BC=10,求△ODE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△APB的面积S与点P运动的路程之间的函数图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.
(1)如图①,若∠BAC=23°,求∠AMB的大小;
(Ⅱ)如图②,过点B作BD∥MA,交AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,过AD的中点O作EF⊥AD,分别交AB、AC于点E、F,连接DE、DF.
(1)判断四边形AFDE是什么四边形?请说明理由;
(2)若BD=8,CD=3,AE=4,求CF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com