【题目】如图,在平面直角坐标系中,点A(n,0)是 x 轴上一点,点 B(0,m)是y轴上一点,且满足多项式(x+m)(nx-2)的积中 x的二次项与一次项系数均为2.
(1)求出A,B两点坐标.
(2)如图1,点M为线段OA上一点,点P为 x 轴上一点,且满足BM=MN,∠NAP=45°,证明:BM⊥MN.
(3)如图2,过O作OF⊥AB于F,以OB为边在y轴左侧作等边△OBM,连接AM交OF于点N,试探究:在线段AF,AN,MN中,哪条线段等于AM与ON差的一半?请写出这个等量关系并证明.
【答案】(1)A(2,0),B(0,2);(2)见解析;(3)AN=(AM-ON),证明见解析
【解析】
(1)计算(x+m)(nx-2),然后令二次项系数和一次项系数均为2求出m、n的值,即可得出A、B的坐标;
(2)在y轴上取一点使得OC=OM,过点B作BD⊥MC于点D,延长NA与CM交于点E,先证△BDC≌△AEM,再证△BDM≌△MEN,得到∠BMD=∠N,然后由直角三角形的两锐角互余等量代换即可得出结论;
(3)在AM上截取一点C使CM=ON,连接BC并延长交x轴于点D.由∠BOM=60°得∠MOD=30°,由等腰三角形的性质和三角形外角的性质可得∠OMA=∠OAM=15°,得到∠BAM=30°,∠BMA=45°,可证△OAN≌△BMC,可得到∠ABC=90°,进而利用含30°角直角三角形的性质和线段的和差关系即可得出结论.
(1)解:(x+m)(nx-2)=nx2+(mn+2)x-2m,
∵x的二次项与一次项系数均为2,
∴,
解得m=2,n=2,
∴A(2,0),B(0,2);
(2)在y轴上取一点使得OC=OM,过点B作BD⊥MC于点D,延长NA与CM交于点E,
∵OC=OM,∠COM=90°,
∴∠OCM=∠OMC=45°,
∴∠DCB=∠OCM=45°,∠AME=∠OMC=45°,
∴∠DCB=∠AME,
∵∠MAE=∠NAP=45°,
在△BDC中,∠DBC=90°-45°=45°,
∴∠MAE=∠DBC,
∵OA=OB,OM=OC,
∴AM=BC,
在△BDC和△AEM中,
∴△BDC≌△AEM(AAS),
∴BD=AE,
∴BD=ME,
在Rt△BDM和Rt△MEN中,
,
∴△BDM≌△MEN(HL),
∴∠BMD=∠N,
∵∠N+∠NME=90°,
∴∠BMD+∠NME=90°,
∴∠BMN=90°,
∴BM⊥MN;
(3)(3)AN=(AM-ON).
证明:在AM上截取一点C使CM=ON,连接BC并延长交x轴于点D.
∵△OBM是等边三角形,
∴∠BOM=∠BMO=60°,MB=OB=2,
∴∠MOD=90°-60°=30°,
∵OM=OA,
∴∠OMA=∠OAM=15°,
∵OA=OB,OB⊥OA,
∴∠OBA=∠OAB=45°,
∴∠BAM=45°-15°=30°,
∠BMA=60°-15°=45°,
∵△AOB是等腰直角三角形,OF⊥AB,
∴∠AON=45°,
∵OA=2,∴OA=MB,
在△OAN和△BMC中,
∴△OAN≌△BMC(SAS),
∴∠OAN=∠MBC=15°,AN=BC,
∴∠ABC=45°+60°-15°=90°,
在Rt△ABC中∠BAM=30°,
∴BC=AC,
∴AN=AC=(AM-CM)= (AM-ON).
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.
(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;
(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:
选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.
小刚同学测量的结果正确吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com