【题目】如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.
【答案】30°.
【解析】
如图:分别作点P关于OB、AO的对称点P'、P',分别连OP'、O P'、P' P'交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P'为等边三角形,∠AOB= ∠P'O P'=30°.
解:如图:分别作点P关于OB、AO的对称点P'、P',分别连OP'、O 、P' 交OB、OA于M、N,
由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"
∴由两点之间线段最短可知,此时△PMN周长的最小
∴P'P"=5
由对称OP=OP'=OP"=5
∴△P'OP"为等边三角形
∴∠P'OP"=60
∵∠P'OB=∠POB,∠P"OA=∠POA
∴∠AOB= ∠P'O P'=30°.
故答案为:30°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(n,0)是 x 轴上一点,点 B(0,m)是y轴上一点,且满足多项式(x+m)(nx-2)的积中 x的二次项与一次项系数均为2.
(1)求出A,B两点坐标.
(2)如图1,点M为线段OA上一点,点P为 x 轴上一点,且满足BM=MN,∠NAP=45°,证明:BM⊥MN.
(3)如图2,过O作OF⊥AB于F,以OB为边在y轴左侧作等边△OBM,连接AM交OF于点N,试探究:在线段AF,AN,MN中,哪条线段等于AM与ON差的一半?请写出这个等量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下列结论:①AC平分∠PAD;②∠APO=∠DCO;③△OPC是等边三角形;④AC=AO+AP;其中正确的序号是( )
A.①③④B.②③C.①②④D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知点D,E,F分别为BC,AD,AE的中点,且S△ABC=4cm2,则阴影部分面积S=( )cm2.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AB=AC=6,∠A=45°,点D在AC上,点E在BD上,且△ABD、△CDE、△BCE均为等腰三角形.
(1)求∠EBC的度数;
(2)求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知RtΔABC,∠C=90°,D为BC的中点.以AC为直径的圆O交AB于点E.
(1)求证:DE是圆O的切线.
(2)若AE:EB=1:2,BC=6,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com