【题目】已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
【答案】(1)证明见解析;(2)m=1或m=﹣;(3)4a2﹣n2+8n=16.
【解析】
(1)直接利用△=b2-4ac,进而利用偶次方的性质得出答案;
(2)首先解方程,进而由|x1-x2|=6,求出答案;
(3)利用(2)中所求得出m的值,进而利用二次函数对称轴得出答案.
(1)证明:由题意可得:
△=(1-5m)2-4m×(-5)
=1+25m2-10m+20m
=(5m+1)2>0,
故无论m为任何非零实数,此方程总有两个实数根;
(2)解:mx2+(1-5m)x-5=0,
解得:x1=-,x2=5,
由|x1-x2|=6,
得|--5|=6,
解得:m=1或m=-;
(3)解:由(2)得,当m>0时,m=1,
此时抛物线为y=x2-4x-5,其对称轴为:x=2,
由题已知,P,Q关于x=2对称,
∴=2,即2a=4-n,
∴4a2-n2+8n=(4-n)2-n2+8n=16.
科目:初中数学 来源: 题型:
【题目】如图1,在三角形ABC中,D是BC上一点,且∠CDA=∠CAB.(注:三角形内角和等于180°)
(1)求证:∠CDA=∠DAB+∠DBA;
(2)如图2,MN是经过点D的一条直线,若直线MN交AC边于点E,且∠CDE=∠CAD.求证:∠AED+∠EAB=180°;
(3)将图2中的直线MN绕点D旋转,使它与射线AB交于点P(点P不与点A,B重合).在图3中画出直线MN,并用等式表示∠CAD,∠BDP,∠BPD这三个角之间的数量关系,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,
(1)设∠AED的度数为x,∠ADE的度数为y,那么∠1、∠2的度数分别是多少?(用含有x或y的代数式表示)
(2)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在数轴上有两点,点表示的数为,点在点的左边,且.若有一动点从数轴上点出发,以每秒个单位长度的速度沿数轴向左匀速运动,动点从点出发,以每秒个单 位长度的速度沿着数轴向右匀速运动,设运动时间为秒,解决以下问题:
写出数轴上点所表示的数;
若点分别从两点同时出发,问点运动多少秒与点相距个单位长度?
探索问题:若为的中点,为的中点,当点在线段上运动过程中,探索线段 与线段的数量关系(写出过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.
过点C画线段AB的平行线CD;
过点A画线段BC的垂线,垂足为E;
过点A画线段AB的垂线,交线段CB的延长线于点F;
线段AE的长度是点______到直线______的距离;
线段AE、BF、AF的大小关系是______用“”连接
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:
根据图表解答下列问题:
(1)请将条形统计图补充完整;
(2)在扇形统计图样中,产生的有害垃圾C所对应的圆心角 度;
(3)调查发现,在可回收物中塑料类垃圾占13%,每回收1吨塑料类垃圾可获得0.5吨二级原料.假设该城市每月产生的生活垃圾为1000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是某校“河南省汉子听写大赛初赛”冠军组成员的年龄分布
年龄/岁 | 12 | 13 | 14 | 15 |
人数 | 5 | 15 | x | 12﹣x |
对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A. 平均数、中位数 B. 平均数、方差 C. 众数、中位数 D. 中位数、方差
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com