精英家教网 > 初中数学 > 题目详情
2.如图,?ABCD中,AB=2cm,AC=5cm,S?ABCD=8cm2,E点从B点出发,以1cm每秒的速度,在AB延长线上向右运动,同时,点F从D点出发,以同样的速度在CD延长线上向左运动,运动时间为t秒.
(1)在运动过程中,四边形AECF的形状是平行四边形;
(2)t=1时,四边形AECF是矩形;
(3)求当t等于多少时,四边形AECF是菱形.

分析 (1)由平行四边形的性质得出AB=CD=2cm,AB∥CD,由已知条件得出CF=AE,即可得出四边形AECF是平行四边形;
(2)若四边形AECF是矩形,则∠AFC=90°,得出AF⊥CD,由平行四边形的面积得出AF=4cm,在Rt△ACF中,由勾股定理得出方程,解方程即可;
(3)当AE=CE时,四边形AECF是菱形.过C作CG⊥BE于G,则CG=4cm,由勾股定理求出AG,得出GE,由勾股定理得出方程,解方程即可.

解答 解:(1)四边形AECF是平行四边形;理由如下:
∵四边形ABCD是平行四边形,
∴AB=CD=2cm,AB∥CD,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四边形AECF是平行四边形;
故答案为:平行四边形;
(2)t=1时,四边形AECF是矩形;理由如下:
若四边形AECF是矩形,
∴∠AFC=90°,
∴AF⊥CD,
∵S?ABCD=CD•AF=8cm2
∴AF=4cm,
在Rt△ACF中,AF2+CF2=AC2
即42+(t+2)2=52
解得:t=1,或t=-5(舍去),
∴t=1;故答案为:1;
(3)依题意得:AE平行且等于CF,
∴四边形AECF是平行四边形,
故AE=CE时,四边形AECF是菱形.
又∵BE=tcm,
∴AE=CE=t+2(cm),
过C作CG⊥BE于G,如图所示:
则CG=4cmcm,
∵AG=$\sqrt{A{C}^{2}-C{G}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3(cm),
∴GE=t+2-3=t-1(cm),
在△CGE中,由勾股定理得:CG2+GE2=CE2=AE2
即42+(t-1)2=(t+2)2
解得:t=$\frac{13}{6}$,
即t=$\frac{13}{6}$s时,四边形AECF是菱形.

点评 本题考查了平行四边形的性质与判定、菱形的判定、矩形的判定、勾股定理等知识;熟练掌握平行四边形的性质,由勾股定理得出方程是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.(1)解不等式:3x<2+x.
(2)求代数式$\frac{{x}^{2}+2x+1}{x+1}$÷$\frac{{x}^{2}-1}{x-1}$-$\frac{x}{x+2}$的值,其中x=$\sqrt{2}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列二次根式中属于最简二次根式的是(  )
A.$\sqrt{12}$B.$\sqrt{\frac{a}{b}}$C.$\sqrt{{a}^{2}+1}$D.$\sqrt{4a+4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:
阅读本数n(本)123456789
人数(名)126712x7y1
请根据以上信息回答下列问题:
(1)求出本次随机抽取的学生总人数;
(2)分别求出统计表中的x,y的值;
(3)估计该校九年级400名学生中为“优秀”档次的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若a>1,关于x的不等式ax-x-a2+1>0的解集为x>a+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.关于x的一元二次方程x2+2(m+1)x+m2-1=0有实数根,则实数m的取值范围是m≥-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.在3.14、$\sqrt{12}$、$\frac{22}{7}$、-$\sqrt{2}$、$\root{3}{27}$、$\frac{π}{3}$、0.2020020002这六个数中,无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知圆锥的轴截面为等边三角形,则(1)圆锥的侧面展开图的圆心角度数为180°;(2)圆锥的侧面积与底面积之比为2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若不等式10+$\frac{1}{3}$(x-4)≤2(2x-3)的最小整数解是方程-ax=4的解,求a的值.

查看答案和解析>>

同步练习册答案