精英家教网 > 初中数学 > 题目详情

【题目】河南省开封市铁塔始建于公元1049年(北宋皇祐元年),是国家重点保护文物之一,在900多年中,历经了数次地震、大风、水患而巍然屹立,素有“天下第一塔”之称.如图,小明在铁塔一侧的水平面上一个台阶的底部A处测得塔顶P的仰角为45°,走到台阶顶部B处,又测得塔顶P的仰角为38.7°,已知台阶的总高度BC3米,总长度AC10米,试求铁塔的高度.(结果精确到1米,参考数据:sin38.7°≈0.63cos38.7°≈0.78tan38.7°≈0.80

【答案】铁塔约高55米.

【解析】

如图,过点BBEDP于点E,由题可知,∠EBP38.7°,∠DAF45°BECDDPAD,设铁塔高度DPx米,则BECDx+10,解直角三角形即可得到结论.

如图,过点BBEDP于点E

由题可知,∠EBP38.7°,∠DAF45°BECDDPAD

设铁塔高度DPx米,则BECDx+10

EPDPDEADBCx3

RtBEP中∵EPx3BEx+10

tanEBPx3=(x+10×tan38.7°

解得x55

答:铁塔约高55米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】榴莲上市的时候,某水果行以线上线下相结合的方式一共销售了箱榴莲.已知线上销售的每箱利润为元.线下销售的每箱利润(元)与销售量(箱)之间的函数关系如图中的线段

1)求之间的函数关系.

2)当线下的销售利润为元时,求的值.

3)实际线下销售时,每箱还要支出其它费用,若线上线下售完这箱榴莲所获得的最大总利润为元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知抛物线yax2+bx5x轴交于A(﹣10),B50)两点,与y轴交于点C

1)求抛物线的函数表达式;

2)如图2CEx轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BCCE分别相交于点FG,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;

3)若点K为抛物线的顶点,点M4m)是该抛物线上的一点,在x轴,y轴上分别找点PQ,使四边形PQKM的周长最小,求出点PQ的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).

根据上述信息,解答下列各题:

×

(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;

(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;

(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).

统计量

平均数(次)

中位数(次)

众数(次)

方差

该班级男生

根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=10AC=8BC=6,直线l经过点A,且垂直于AB,分别与ABAC相交于点MN.直线l从点A出发,沿AB方向以1cm/s的速度向点B运动,当直线l经过点B时停止运动,若运动过程中AMN的面积是y(cm2),直线l的运动时间是x(s)yx之间函数关系的图象大致是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3AD=5,点EDC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sinEFC的值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距(米),甲行走的时间为(分),关于的函数函数图像的一部分如图所示.

(1)求甲行走的速度;

(2)在坐标系中,补画关于函数图象的其余部分;

(3)问甲、乙两人何时相距360米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一台实物投影仪,图2是它的示意图,折线OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AOOM,垂足为点O,且AO7cm,∠BAO160°,BCOMCD8cm

将图2中的BC绕点B向下旋转45°,使得BCD落在BCD′的位置(如图3所示),此时CD′⊥OMAD′∥OMAD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94cos70°≈0.34cot70°≈0.36,结果精确到1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,ABACD点为RtABC外一点,且BDCDDF为∠BDA的平分线,当∠ACD15°,下列结论:①∠ADC45°;②ADAF;③AD+AFBD;④BCCE2D,其中正确的是( )

A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

同步练习册答案