精英家教网 > 初中数学 > 题目详情

【题目】式子的计算结果的个位数上的数字( )

A.1B.3C.7D.9

【答案】A

【解析】

原式中2变形为(3-1)后,利用平方差公式计算即可得到结果.

原式=(31)(3+1)(3 +1)(3 +1)(3 +1)(3 +1)(3 +1)+1

=(31)(3+1)(3+1)(3+1)(3+1)(3+1)+1

=(31)(3+1)(3+1)(3+1)(3+1)+1

=(31)(3+1)(3+1)(3+1)+1

=(31)(3+1)(3+1)+1

=(31)(3+1)+1

=3 1+1

=3.

3 的个位数字为33 的个位数字为93 的个位数字为73 的个位数字为13 的个位数字为3

3的个位数字,以3971为一组循环出现.

64÷4=16

3的个位数字为1,即原式个位数字为1.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在直角三角形ABC中,∠ABC=90,将三角形ABC绕着点B逆时针旋转一定角度得到三角形BEFEFBC于点G

1)若,当∠ABE等于多少度时,

2)若,当时,

①求BG的长;

②连接AFBE于点O,连接AE(如图2),设三角形EOF的面积为m,求三角形AEO的面积(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.

(1)求菱形ABCD的周长;

(2)若M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当M与AD相切,且切点为AD的中点时,连接AC,求t的值及MAC的度数;

(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.

【答案】1菱形的周长为8;(2t=MAC=105°(3)当t=1﹣或t=1+时,圆M与AC相切.

【解析】试题分析:1)过点BBEAD,垂足为E.由点A和点B的坐标可知:BE=AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 Mx轴的切线为FAD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点BBEAD,垂足为E,连接MFF MAD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MNAC,垂足为N,作MEAD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MNAC,垂足为N,作MEAD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.

试题解析:( 如图1所示:过点,垂足为

∵四边形为菱形,

∴菱形的周长

)如图2所示,⊙轴的切线为 中点为

,且中点,

解得

平移的图形如图3所示:过点

垂足为,连接 为⊙切点,

∵由()可知,

∵四边形是菱形,

切线,

的中点,

是等腰直角三角形,

)如图4所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线

如图5所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线,

综上所述,当时,圆相切.

点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.

型】解答
束】
28

【题目】如图1,在平面直角坐标系中,直线lx轴、y轴分别交于点B40)、C03),点Ax轴负半轴上一点,AMBC于点My轴于点N0 ).已知抛物线y=ax2+bx+c经过点ABC

(1)求抛物线的函数式;

2)连接AC,点D在线段BC上方的抛物线上,连接DCDB,若BCDABC面积满足SBCD= SABC 求点D的坐标;

(3)如图2,EOB中点,设F为线段BC上一点(不含端点),连接EF.一动点PE出发,沿线段EF以每秒3个单位的速度运动到F,再沿着线段PC以每秒5个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(﹣30).下列说法:①abc02ab=04a+2b+c0④若(﹣5y1),(y2)是抛物线上两点,则y1y2

其中说法正确的是(  )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,24小时(含2小时),46小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.

1)本次调查共随机抽取了 名学生;

2)补全条形统计图;

3)扇形统计图中,课外阅读时长“46小时”对应的圆心角度数为

4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车制造厂开发了一款新式自行车计划6月份生产安装600由于抽调不出足够的熟练工来完成新式自行车的安装工厂决定招聘一些新工人他们经过培训后也能独立进行安装.调研部门发现:1名热练工和2名新工人每日可安装8辆自行车;2名熟练工和3名新工人每日可安装14辆自行车

(1)每名熟练工和新工人每日分别可以安装多少辆自行车?

(2)如果工厂招聘n名新工人(0<n<10).使得招聘的新工人和抽调熟练工刚好能完成6月份(30的安装任务那么工厂有哪几种新工人的招聘方案?

(3)该自行车关于轮胎的使用有以下说明本轮胎如安装在前轮安全行使路程为11千公里如安装在后轮安全行使路程为9千公里.请问一对轮胎能行使的最长路程是多少千公里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,,要使四边形是平行四边形,下列可添加的条件不正确的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知百合酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.

1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?

2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出yx的函数关系式;

3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义:在平面直角坐标系中,对于任意点,和直线,我们称直线为点的伴随直线,反之称点为直线的伴随点;特别的,直线为常数)的伴随点为

如图1,已知三个顶点的坐标分别为

1)点的伴随直线的解析式为__________.(请直接写出答案)

2)若直线的伴随点是点,直线的伴随点是点,点轴上的动点,当的周长最小时,求点的坐标.

3)点是折线段的动点(包括端点),若直线是点的伴随直线,当直线有且仅有两个公共点时,请直接写出点的横坐标的取值范围.

查看答案和解析>>

同步练习册答案