【题目】已知百合酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.
(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?
(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;
(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.
【答案】(1)8间,13间 (2) (3)不是;三人客房16间,双人客房1间时费用最低,最低费用为5100元.
【解析】
(1)设三人间有间,双人间有间.注意凡团体入住一律五折优惠,根据①客房人数=50;②住宿费6300 列方程组求解;
(2)根据题意,三人间住了人,则双人间住了()人,住宿费=100×三人间的人数+150×双人间的人数;
(3)根据的取值范围及实际情况,运用函数的性质解答.
(1)设三人间有间,双人间有间,
根据题意得:,
解得:,
答:租住了三人间8间,双人间13间;
(2)根据题意,三人间住了人,住宿费每人100元,则双人间住了()人,住宿费每人150元,
∴;
(3)因为,所以随的增大而减小,
故当满足、为整数,且最大时,
即时,住宿费用最低,
此时,
答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.
所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),点P从点A出发,以每秒1个单位长度的速度沿A﹣B﹣C﹣D﹣A…的规律在图边形ABCD的边上循环运动,则第2019秒时点P的坐标为( )
A. (1,1)B. (0,1)C. (﹣1,1)D. (2,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将直角三角形ABC沿AB方向平移得到直角三角形DEF,已知BE=3,BE=3,FG=1,AC=5,则图中阴影部分的面积为( )
A.10B.13.5C.20D.9.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有27米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC=1,∠C=90°,E、F是AB上的动点,且∠ECF=45°,分别过E、F作BC、AC的垂线,垂足分别为H、G,两垂线交于点M.
(1)当点E与点B重合时,请直接写出MH与AC的数量关系 ;
(2)探索AF、EF、BE之间的数量关系,并证明你的结论;
(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,请画出坐标系并利用(2)中的结论证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).
(1)求抛物线的解析式;
(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;
(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习了统计知识后,小刚就本班同学的三种上学方式进行了一次全面调查,每位同 学选择其中一种方式,图①和图②是他通过收集数据后,绘制的两幅不完整的统计 图:
请你根据以上信息解答下列问题:
(1)该班共有多少名学生?
(2)在扇形图中,骑车上学的人数占全班总人数的百分比是多少?
(3)在条形图中,将表示“步行”上学方式的部分补充完整;
(4)如果全年级共 500 名学生,请你估计全年级步行上学的学生有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形DEBF是平行四边形;
(2)当四边形DEBF是菱形时,求菱形的周长.
(3)在(2)的基础上,直接写出BD与EF的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com