精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB6BC4,过对角线BD中点O的直线分别交ABCD边于点EF.

1)求证:四边形DEBF是平行四边形;

2)当四边形DEBF是菱形时,求菱形的周长.

3)在(2)的基础上,直接写出BDEF的位置关系.

【答案】1)见详解;(2;(3

【解析】

1)根据矩形ABCD的性质,判定BOE≌△DOFASA),得出四边形BEDF的对角线互相平分,进而得出结论;

2)设,则,在RtADE中,由勾股定理得出方程,解方程求出BE,即可得出菱形的周长;

3)根据菱形的性质即可得出答案.

解:(1)证明:在矩形ABCD中,ABDC

OBD的中点

OB=OD

BOEDOF

BOE≌△DOF

EO=FO

BO=DO

∴四边形BEDF为平行四边形

2)∵四边形DEBF是菱形,

,则

中,

解得:

∴菱形的周长为:

3)∵四边形DEBF是菱形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知百合酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.

1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元.求租住了三人间、双人间客房各多少间?

2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出yx的函数关系式;

3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义:在平面直角坐标系中,对于任意点,和直线,我们称直线为点的伴随直线,反之称点为直线的伴随点;特别的,直线为常数)的伴随点为

如图1,已知三个顶点的坐标分别为

1)点的伴随直线的解析式为__________.(请直接写出答案)

2)若直线的伴随点是点,直线的伴随点是点,点轴上的动点,当的周长最小时,求点的坐标.

3)点是折线段的动点(包括端点),若直线是点的伴随直线,当直线有且仅有两个公共点时,请直接写出点的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2x9x轴交于AB两点,与y轴交于点C,连接BCAC

1)求ABOC的长;

2)点E从点A出发,沿x轴向点B运动(点E与点AB不重合),过点E作直线l平行BC,交AC于点D.设AE的长为mADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;

3)在(2)的条件下,连接CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,.把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是(  )

A. B. C. 1 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(10).

1)求抛物线的表达式;

2)把﹣4x1时的函数图象记为H,求此时函数y的取值范围;

3)在(2)的条件下,将图象Hx轴下方的部分沿x轴翻折图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片,对角线为,沿过点的直线折叠,使点落在对角线上的点处,折痕,若,则的长是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应党的文化自信号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:

(1)直接写出a的值,a=   ,并把频数分布直方图补充完整.

(2)求扇形B的圆心角度数.

(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?

查看答案和解析>>

同步练习册答案