【题目】如图,在平面直角坐标系中,OABC的顶点A, C的坐标分别为A(2,0),C(-1,2),反比例函数的图像经过点B.
(1)求k的值.
(2)将OABC沿着x轴翻折,点C落在点C′处.判断点C′是否在反比例函数的图像上,请通过计算说明理由.
【答案】(1)2(2)在,理由见解析
【解析】
(1)根据平行四边形的性质可得AO=BC,再根据A、C点坐标可以算出B点坐标,再把B点坐标代入反比例函数解析式中即可求出k的值.
(2)根据翻折方法可知C与C′点关于x轴对称,故C′点坐标是(-1,-2),把C′点坐标(-1,-2)代入解析式发现能使解析式左右相等,故点C′是否在反比例函数的图象上
解:(1)∵四边形OABC是平行四边形,
∴BC=AO,
∵A(2,0),
∴OA=2,
∴BC=2,
∵C(-1,2),
∴CD=1,
∴BD=BC-CD=2-1=1,
∴B(1,2),
∵反比例函数y=(k≠0)的图象经过点B,
∴k=1×2=2;
(2)∵OABC沿x轴翻折,点C落在点C′处,
∴C′点坐标是(-1,-2),
∵k=2,
∴反比例函数解析式为y=,
把C′点坐标(-1,-2)代入函数解析式能使解析式左右相等,
故点C′在反比例函数y=的图象上.
科目:初中数学 来源: 题型:
【题目】如图,已知点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在小山的东侧处有一一热气球,以每分钟28米的速度沿着与垂直方向夹角为30°的方向飞行,半小时后到达处,这时气球上的人发现,在处的正西方向有一处着火点,5分钟后,在处测得着火点的俯角是15°,求热气球升空点与着火点的距离.(结果保留根号,参考数据: )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=16时,大棚内的温度约为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.
(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;
x | … | 1 | 2 | 3 | … | |||||
y | … | 2 | … |
(2)请用配方法求函数y=x+(x>0)的最小值;
(3)猜想函数y=x+(x>0,a>0)的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=( )
A. 15 B. 13 C. 12 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.
(1)求抛物线的解析式;
(2)求线段所在直线的解析式;
(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com