【题目】如图,在△ABC中,AE⊥BC于E,点D为BC边中点,AF⊥AB交BC边于点F,∠C=2∠B,若DE=4,CF=2,则CE=_____.
【答案】5.
【解析】
取BF的中点G,连接AG,则BG=FG,由直角三角形斜边上的中线性质得出AG=BF=BG=FG,由等腰三角形的性质和三角形的外角性质得出∠AGC=∠C,得出AG=AC,得出GE=CE,BD=CD,设EF=x,则GE=CE=EF+CF=x+2,BD=CD=DE+EF+CF=x+6,DG=GE﹣DE=x﹣2,得出BG=FG=GE+EF=2x+2,由BD=CD得出方程,解方程得出EF=3,即可得出结果.
解:取BF的中点G,连接AG,
如图所示:
则BG=FG,
∵AF⊥AB,
∴∠BAF=90°,
∴AG=BF=BG=FG,
∴∠B=∠GAB,
∵∠AGC=∠B+∠GAB=2∠B,∠C=2∠B,
∴∠AGC=∠C,
∴AG=AC,
∵AE⊥BC,
∴GE=CE,
∵点D为BC边中点,
∴BD=CD,
设EF=x,则GE=CE=EF+CF=x+2,BD=CD=DE+EF+CF=x+6,DG=GE﹣DE=x﹣2,
∴BG=FG=GE+EF=2x+2,
∵BD=CD,
∴2x+2+x﹣2=x+6,
解得:x=3,
∴EF=3,
∴CE=EF+CF=5;
故答案为:5.
科目:初中数学 来源: 题型:
【题目】根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.
(1)函数y=+1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;
(2)函数y=+1的图象与x轴、y轴交点的情况是: ;
(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:
如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.
(1)已知A(﹣2,3),B(5,0),C(t,﹣2).
①当t=2时,点A,B,C的最优覆盖矩形的面积为 ;
②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;
(2)已知点D(1,1).E(m,n)是函数y=(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:
表1全国森林面积和森林覆盖率
清查次数 | 一 (1976年) | 二 (1981年) | 三 (1988年) | 四 (1993年) | 五 (1998年) | 六 (2003年) | 七 (2008年) | 八 (2013年) |
森林面积(万公顷) | 12200 | 1150 | 12500 | 13400 | 15894. 09 | 17490.92 | 19545.22 | 20768.73 |
森林覆盖率 | 12.7% | 12% | 12.98% | 13.92% | 16.55% | 18.21% | 20.36% | 21.63% |
表2北京森林面积和森林覆盖率
清查次数 | 一 (1976年) | 二 (1981年) | 三 (1988年) | 四 (1993年) | 五 (1998年) | 六 (2003年) | 七 (2008年) | 八 (2013年) |
森林面积(万公顷) | 33.74 | 37.88 | 52.05 | 58.81 | ||||
森林覆盖率 | 11.2% | 8.1% | 12.08% | 14.99% | 18.93% | 21.26% | 31.72% | 35.84% |
(以上数据来源于中国林业网)
请根据以上信息解答下列问题:
(1)从第 次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;
(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到 万公顷(用含a和b的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ADBC内接于⊙O,AB为⊙O的直径,对角线AB、CD相交于点E.
(1)求证:∠BCD+∠ABD=90°;
(2)点G在AC的延长线上,连接BG,交⊙O于点Q,CA=CB,∠ABD=∠ABG,作GH⊥CD,交DC的延长线于点H,求证:GQ=GH.
(3)在(2)的条件下,过点B作BF∥AD,交CD于点F,GH=3CH,若CF=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了改善寄宿制学校学生的居住条件,某市财政局准备给部分学校加装空调.经市场调研发现:购买1台种型号的空调和2台种型号的空调共需资金6400元;购买2台型空调和3台型空调共需资金10600元.
(1)求,两种型号的空调单价各是多少元;
(2)现计划购进,两种型号的空调共200台,其中型空调为台,并且要求公司15日内(含15日)完成安装调试.公司承诺:若型空调不大于75台,则型空调一定能保证15天内完成安装与调试,同时型空调每天可以完成10台的安装与调试;价格方面,当购买型空调不少于60台时,公司给予型空调7折优惠;当购买型空调大于140台时,公司给予型空调8折优惠.若既能保证如期完成安装调试又能使花费资金最少,应购买,两种型号的空调各多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
(2)探究证明
将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
(3)拓展延伸
在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,连接AC,BC,OP,AC与OP相交于点D.
(1)求证:∠B+∠CPO=90°;
(2)连结BP,若AC=,sin∠CPO=,求BP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com