| A. | 1 | B. | 12 | C. | 13 | D. | 25 |
分析 根据一元二次方程根与系数的关系,x1+x2=m,x1x2=2m-1,根据x12+x22=7,将(x1+x2)2-2x1x2=7,可求出m的值,再结合一元二次方程根的判别式,得出m的值,再将(x1-x2)2=x12+x22-2x1x2求出即可.
解答 解:∵一元二次方程x2-mx+2m-1=0的两个实数根分别是x1,x2,
∴x1+x2=m,x1x2=2m-1,
∵x12+x22=7,
∴(x1+x2)2-2x1x2=7,
∴m2-2(2m-1)=7,
∴整理得:m2-4m-5=0,
解得:m=-1或m=5,
∵△=m2-4(2m-1)≥0,
当m=-1时,△=1-4×(-3)=13>0,
当m=5时,△=25-4×9=-11<0,
∴m=-1,
∴一元二次方程x2-mx+2m-1=0为:x2+x-3=0,
∴(x1-x2)2=x12+x22-2x1x2=7-2×(-3)=13.
故选:C.
点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m<0 | B. | m≥0 | C. | 0≤m≤1 | D. | 0<m≤1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com