精英家教网 > 初中数学 > 题目详情

【题目】计算:(1 ;(2 ;(3 4.

【答案】(1)(2)3a2a2(3)1(4)9x26xyy2z2

【解析】

(1)运用积的乘方及同底数幂的除法法则计算即可.

(2)直接去括号求得.

(3)可以把20202018化为(20191)(20191),然后利用平方差公式化简即可求解.

(4)利用平方差公式求解即可.

(1)(3a2b)2÷(-15ab2)=9a4b2÷(-15ab2)=.

(2)(a+1)(3a2)3a22a3a 23a2a2

(3)201922020201820192(20191)(20191)20192(201921)1

(4)(3x+y+z)(3x+yz)(3x y)2z29x2 6xy y2 z2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,E,F分别是AB,DC上的点,且,连接DE,BF,AF.

1)求证:四边形DEBF是平行四边形;

2)若AF平分,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数的图象交于两点.

试确定上述反比例函数和一次函数的表达式;

OB,在x轴上取点C,使,并求的面积;

直接写出一次函数值大于反比例函数值的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON=90,A是∠MON内部的一点,过点AAB⊥ON,垂点为点B,AB=3厘米,OB=4厘米,动点E、F同时从O点出发,点E1.5厘米/秒的速度沿ON方向运动,点F2厘米/秒的速度沿OM方向运动,EFOA交于点C,连接AE,当点E到达点B时,点F随之停止运动。设运动时间为t秒(t>0)。

(1)当t=1秒时,ΔEOF与ΔABO是否相似?请说明理由。

(2)在运动过程中,不论t取何值时,总有EF⊥OA,为什么?

3)连接AF,在运动过程中,是否存在某一时刻t,使得SΔAEF=S四边形ABOF ?若存在,请求出此时t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=3AC=4BC=5P 为边 BC 上一动点,PEAB EPFAC FM EF 中点,则 AM 的最小值为(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成相应的任务:

全等四边形根据全等图形的定义可知:四条边分别相等,四个角也分别相等的两个四边形全等.探索三角形全等的条件时,我们把两个三角形中一条边相等一个角相等称为一个条件.智慧小组的同学类比探索三角形全等条件的方法,探索四边形全等的条件,进行了如下思考:如图 1,四边形ABCD和四边形A'B'C'D'中,连接对角线ACA'C',这样两个四边形全等的问题就转化为ABCA'B'C'ACD A 'C 'D '的问题.若先给定ABCA'B'C'的条件,只要再增加2个条件使ACDA'C'D'即可推出两个四边形中四条边分别相等,四个角也分别相等,从而说明两个四边形全等.

按照智慧小组的思路,小明对图1中的四边形ABCD和四边形A'B'C'D'先给出如下条件:ABA'B',∠B=∠B'BCB'C',小亮在此基础上又给出“ADA'D'CDC'D'两个条件,他们认为满足这五个条件能得到四边形ABCD四边形A'B'C'D'”.

(1)请根据小明和小亮给出的条件,说明四边形ABCD四边形A'B'C'D'的理由;

(2)请从下面AB两题中任选一题作答,我选择______.

A.在材料中小明所给条件的基础上,小颖又给出两个条件“ADA'D',∠BCD=∠B'C'D',满足这五个条件_______(不能”)得到四边形 ABCD四边形A'B'C'D'”.

B.在材料中小明所给条件的基础上,再添加两个关于原四边形的条件(要求:不同于小亮的条件),使四边形ABCD四边形A'B'C'D',你添加的条件是:_____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与函数的图象交于两点,轴于C轴于D

k的值;

根据图象直接写出x的取值范围;

是线段AB上的一点,连接PCPD,若面积相等,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,三角形记作在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,先将向上平移3个单位长度,再向右平移2个单位长度,得到

三个顶点的坐标分别是:__________________

在图中画出

平移后的三个顶点坐标分别为:__________________

y轴有一点P,使面积相等,则P点的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,AB=3cm,BC=5cm,ACAB.ACD沿AC的方向匀速平移得到PNM,速度为1cm/s;同时,点Q从点C出发,沿着CB方向匀速移动,速度为1cm/s;当PNM停止平移时,点Q也停止移动,如图.设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.解答下列问题:

(1)当t为何值时,PQAB?

(2)当t=3时,求QMC的面积;

(3)是否存在某一时刻t,使PQMQ?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案