分析 (1)先证明∠BPE=∠PCD,再由ASA证明△PBE≌△PCD,即可得出PE=PD;
(2)同(1),即可得出结论.
解答 (1)证明:连接CP,如图1所示:![]()
∵AC=BC,∠C=90°,P为斜边的中点,
∴PC⊥AB,PC=$\frac{1}{2}$AB=PB,∠PCD=∠B=45°,
∴∠BPE+∠EPC=90°,∠DPC+∠EPC=90°,
∴∠BPE=∠PCD,
在△PBE和△PCD中,$\left\{\begin{array}{l}{∠B=∠PCD}&{\;}\\{PB=PC}&{\;}\\{∠BPE=∠DPC}&{\;}\end{array}\right.$,
∴△PBE≌△PCD(ASA),
∴PE=PD,
即△PDE为等腰三角形;
(2)结论成立;理由如下:
连接CP,如图所示:![]()
由(1)得:∠BPE=∠PCD,∠PCD=90°+45°=135°,∠PBE=180°-45°=135°,
∴∠PCD=∠PBE,
同(1)可证:△PBE≌△PCD(ASA),
∴PE=PD,
即△PDE为等腰三角形.
点评 本题考查了等腰直角三角形的性质以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 16$\sqrt{3}$m2 | B. | 32$\sqrt{3}$m2 | C. | $\sqrt{3}$m2 | D. | 96$\sqrt{3}$m2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com