精英家教网 > 初中数学 > 题目详情
1.如图,直线L与⊙O相切于点D.过圆心O作EF∥L交⊙O于E、F两点,点A是⊙O上一点,连接AE、AF.并分别延长交直线L于 B、C两点.
(1)求证:∠ABC+∠ACB=90°;
(2)当⊙O的半径R=5,BD=12时,求tan∠ABC的值.

分析 (1)由圆周角定理可得∠EAF=90°,可证得结论;
(2)连接OD,过E作EH⊥BC,可知四边形EODH为正方形,在Rt△BEH中,可求得tan∠ABC.

解答 (1)证明:
∵EF是⊙O的半径,
∴∠EAF=90°,
∴∠ABC+∠ACB=90°;
(2)解:连接OD,则OD⊥BD,
过E作EH⊥BC,垂足为H,如图,

∴EH∥OD,
∵EF∥BC,OE=OD,
∴四边形EODH是正方形,
∴EH=HD=OD=5,
又∵BD=12,
∴BH=7,
在Rt△BEH中,tan∠ABC=$\frac{EH}{BH}$=$\frac{5}{7}$.

点评 本题主要考查切线的性质及正方形的判定和性质、三角函数的定义等知识,掌握切线垂直过切点的半径是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在△ABC中,AC=BC,∠C=90°,将一块等腰直角三角尺的直角顶点放在斜边AB的中点P处,绕点P旋转
(1)如图1,三角尺的两条直角边分别交边AC,BC于D,E两点,求证:△PDE为等腰三角形.
(2)如图2,三角尺的两条直角边分别交射线AC,射线CB于D,E两点.(1)中的结论还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,△ABC中,AB=AC=5cm,BC=6cm,BD平分∠ABC,BD交AC于点D,如果将△ABD沿BD翻折,点A落在点A′处,那么△DA′C的面积为$\frac{12}{11}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y=$\frac{k}{x}$经过圆心H,则k=-8$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=-x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=$\frac{1}{2}$.
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知矩形外-点P到矩形ABCD三个顶点A,B,C的距离分别为PA=60,PB=20,PC=70.求PD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:($\frac{\sqrt{3}}{3}$)-2-|$\root{3}{-8}$+$\sqrt{3}$|×(-$\frac{4}{\sqrt{12}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.【提出问题】如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
【探究发现】:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,
因为△EGH与△EBH高相等,底的比是1:2,
所以S△EGH=$\frac{1}{2}$S△EBH
因为△EFH与△DEH高相等,底的比是1:2,
所以S△EFH=$\frac{1}{2}$S△DEH
所以S△EGH+S△EFH=$\frac{1}{2}$S△EBH+$\frac{1}{2}$S△DEH
即S四边形EFHG=$\frac{1}{2}$S四边形EBH
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以S△DBE=$\frac{2}{3}$S△ABD
因为△BDH与△BCD高相等,底的比是2:3,
所以S△BDH=$\frac{2}{3}$S△BCD
所以S△DBE+S△BDH=$\frac{2}{3}$S△ABD+$\frac{2}{3}$S△BCD=$\frac{2}{3}$(S△ABD+S△BCD)=$\frac{2}{3}$S四边形ABCD
即S四边形EBHD=$\frac{2}{3}$S四边形ABCD
所以S四边形EFHG=$\frac{1}{2}$S四边形EBHD=$\frac{1}{2}$×$\frac{2}{3}$S四边形ABCD=$\frac{1}{3}$S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢S四边形EFHG=$\frac{1}{5}$S四边形ABCD,验证你的猜想:
【问题解决】如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)那么S四边形EFHG与S四边形ABCD之间的关系为:S四边形EFHG=$\frac{1}{n}$S四边形ABCD(不必写出求解过程)
【问题拓展】仿照上面的探究思路,若n为奇数,请再给出一个一般性结论.(画出图形,不必写出求解过程)

查看答案和解析>>

同步练习册答案