【题目】如图,在中,,,以为直径的交于点,点是边上一点(点不与点,重合),的延长线交于点,,且交于点.
(1)求证:.
(2)连接,,求证:.
(3)若,,求的长.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
(3)由全等三角形对应边相等得到AE=BF=2,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
(1)证明:连接.
如图,在中,,,
∴.
∵是的直径,
∴,即,
∴,
∴.
∵,,
∴,
又∵,
∴,
在和中,
∴,
∴.
(2)证明:如图,由(1)知,
∴.
∵.
∴是等腰直角三角形,
∴,
∵.
∴,
∴.
(3)解:∵,,
∴.
在中,,
∴根据勾股定理得,
∵,,
∴.
∵为等腰直角三角形,,
∴,
∵,∴.
∵,,
∴,
∴,即,
∴,即,
则.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点为坐标原点,抛物线与轴交于点(点在点的左侧),与轴正半轴交于点,.
(1)如图1,求的值;
(2)如图2,抛物线的顶点坐标是,点是第一象限抛物线上的一点,连接交抛物线的对称轴于点,设点的横坐标是,线段的长为,求与的函数关系式;
(3)如图3,在(2)的条件下,当时,过点作轴交抛物线于点,点是轴下方抛物线上的一个动点,连接交轴于点,直线经过点交于点,连接,过点作交于点,若,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是( ).
A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,AB是非直径弦,弦CD⊥AB,
(1)当CD经过圆心时(如图①),∠AOC+∠DOB=__________;
(2)当CD不经过圆心时(如图②),∠AOC+∠DOB的度数与(1)的情况相同吗?试说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E、F分别在AB、CD边上,AD=6,AB=8,将△CBE沿CE翻折,使B点的对应点B′刚好落在对角线AC上,将△ADF沿AF翻折,使D点的对应点D′也恰好落在对角线AC上,连接EF,则EF的长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮进行摸牌游戏,如图,他们有四张除牌面数字不同外、其他地方完全相同的纸牌,牌面数字分别为4,5,6,7,他们把纸牌背面朝上,充分洗匀后,从这四张纸牌中摸出一张,记下数字放回后,再次重新洗匀,然后再摸出一张,再次记下数字,将两次数字之和做为对比结果.若两次数字之和大于11,则小明胜;若两次数字之和小于11,则小亮胜.
(1)请你用列表法或树状图列出这个摸牌游戏中所有可能出现的结果.
(2)这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A的坐标为(4,0),点B的坐标为(0,3),在第一象限内找一点P(a,b) ,使△PAB为等边三角形,则2(a-b)=___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com