【题目】如图,已知点A的坐标为(4,0),点B的坐标为(0,3),在第一象限内找一点P(a,b) ,使△PAB为等边三角形,则2(a-b)=___________.
【答案】
【解析】
根据A、B坐标求出直线AB的解析式后,求得AB中点M的坐标,连接PM,在等边△PAB中,M为AB中点,所以PM⊥AB,,再求出直线PM的解析式,求出点P坐标;在Rt△PAM中,AP=AB=5,,即且a>0,解得a>0,即,将a代入直线PM的解析式中求出b的值,最后计算2(a-b)的值即可;
解:∵A(4,0),B(0,3),
∴AB=5,
设,
∴,
∴ ,
∴,
∵A(4,0) B(0,3) ,
∴AB中点,连接PM,
在等边△PAB中,M为AB中点,
∴PM⊥AB,,
∴,
∴设直线PM的解析式为,
∴,
∴,
∴,
∴,
在Rt△PAM中,AP=AB=5,
∴,
∴,
∴,
∴,
∵a>0,
∴,
∴,
∴;
科目:初中数学 来源: 题型:
【题目】如图,在中,,,以为直径的交于点,点是边上一点(点不与点,重合),的延长线交于点,,且交于点.
(1)求证:.
(2)连接,,求证:.
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.
组别 | 时间/小时 | 频数/人数 |
A组 | 2 | |
B组 | m | |
C组 | 10 | |
D组 | 12 | |
E组 | 7 | |
F组 | 4 |
频数分布表
请根据图表中的信息解答下列问题:
(1)求频数分布表中m的值;
(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;
(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点A(-2,0),交y轴于点B(0,).直线过点A与y轴交于点C,与抛物线的另一个交点是D.
(1) 求抛物线与直线的解析式;
(2)点P是抛物线上A、D间的一个动点,过P点作PM∥CE交线段AD于M点.
①过D点作DE⊥y轴于点E,问是否存在P点使得四边形PMEC为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
②作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m关于x的函数关系式,并求出m的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的直角边在轴上,,反比例函数的图象与边相交于点,与边相交于点.
(1)求这个反比例函数的解析式;
(2)若点是的中点,.
①求的度数;
②将绕点逆时针旋转,点的对应点为,直接写出的坐标,并判断点是否在此反比例函数的图象上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一组邻边相等的凸四边形叫做“和睦四边形”,寓意是全世界和平共处,睦邻友好,共同发展.如菱形,正方形等都是“和睦四边形”.
(1)如图1,BD平分∠ABC,AD∥BC,求证:四边形ABCD为“和睦四边形”;
(2)如图2,直线与x轴、y轴分别交于A、B两点,点P、Q分别是线段OA、AB上的动点.点P从点A出发,以每秒4个单位长度的速度向点O运动.点Q从点A出发,以每秒5个单位长度的速度向点B运动.P、Q两点同时出发,设运动时间为t秒.当四边形BOPQ为“和睦四边形”时,求t的值;
(3)如图3,抛物线与轴交于A、B两点(点A在点B的左侧),与y轴交于点,抛物线的顶点为点D.当四边形COBD为“和睦四边形”,且CD=OC.抛物线还满足:①;②顶点D在以AB为直径的圆上. 点是抛物线上任意一点,且.若恒成立,求m的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下图:
下列说法正确的是( )
A.该班级所售图书的总数收入是226元
B.在该班级所售图书价格组成的一组数据中,中位数是4
C.在该班级所售图书价格组成的一组数据中,众数是15
D.在该班级所售图书价格组成的一组数据中,方差是2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将矩形纸片折叠,使得顶点与边上的动点重合(点不与点、重合),为折痕,点、分别在边、上.连结、、,其中,与相交于点.过点、、.
(1)若,求证:;
(2)随着点的运动,若与相切于点,又与相切于点,且,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com