精英家教网 > 初中数学 > 题目详情

【题目】现场学习题:问题背景:在△ABC中,ABBCAC三边的长分别为,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.

1)请你将△ABC的面积直接填写在横线上.   

思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:   

【答案】12.5;(2)见解析,3a2

【解析】

1)把△ABC所在长方形画出来,再用矩形的面积减去周围多余三角形的面积即可

2是直角边长为aa的直角三角形的斜边;是直角边长为4a2a的直角三角形的斜边;是直角边长为a5a的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积.

1SABC4×2×4×1×1×1×2×32.5

2SABC5a×2a×a×a×2a×4a×a×5a3a2

故答案为:2.53a2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】高铁给我们的出行带来了极大的方便.如图,和谐号高铁列车座椅后面的小桌板收起时,小桌板的支架的底端N与桌面顶端M的距离MN=75cm,且可以看作与地面垂直.展开小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架长BN与桌面宽AB的长度之和等于MN的长度.求小桌板桌面的宽度AB(结果精确到1cm,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知长方形OABC的顶点Ax轴上,顶点Cy轴上,OA18OC12DE分别为OABC上的两点,将长方形OABC沿直线DE折叠后,点A刚好与点C重合,点B落在点F处,再将其打开、展平.

1)点B的坐标是   

2)求直线DE的函数表达式;

3)设动点P从点D出发,以1个单位长度/秒的速度沿折线D→A→B→C向终点C运动,运动时间为t秒,求当SPDE2SOCDt的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BEAD交于点F.

(1)求证:ABF≌△EDF;

(2)若AB=6,BC=8,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC的平分线交AABC的外接圆于点D,交BC于点F,ABC的平分线交AD于点E.

(1)求证:DE=DB.

(2)若∠BAC=90°,BD=4,求ABC外接圆的半径;

(3)若BD=6,DF=4,求AD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知PQ分别是⊙O的内接正六边形ABCDEF的边ABBC上的点,AP=BQ,则∠POQ的度数为___°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线ABy轴交于点C.

(1)求反比例函数和一次函数的关系式;

(2)AOC的面积;

(3)求不等式kx+b-<0的解集(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:

信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;

信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.

根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.

(1)求m的值及一次函数解析式;

(2)P是线段AB上的一点,连接PC、PD,若△PCA△PDB面积相等,求点P坐标.

查看答案和解析>>

同步练习册答案