精英家教网 > 初中数学 > 题目详情

【题目】如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮,经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.若每平方米草皮需要200元,则种植这片草皮需要多少元?

【答案】种植这片草皮需要234×200=46800.

【解析】分析:先连接AC,根据勾股定理计算出AC,再根据勾股定理逆定理证明△ACD是直角三角形,然后根据面积公式计算.

详解:如图,连接AC,如图所示.

∵∠B=90°,AB=20m,BC=15m,

AC==25m.

AC=25m,CD=7m,AD=24m,

AD2+DC2=AC2,

∴△ACD是直角三角形,且∠ADC=90°,

SABC=×AB×BC=×20×15=150m2,SACD=×CD×AD=×7×24=84m2,

S四边形ABCD=SABC+SACD=234m2.

所以种植这片草皮需要234×200=46800.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中, AB的垂直平分线交AB于点DAD5cm,交边AC于点EBCE的周长等于18cm,则ABC的周长等于(  

A. 23cmB. 25cmC. 28cmD. 30cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+4图象交直线OA于点A(1,2),交y轴于点B,点C为坐标平面内一点.

(1)k;

(2)若以OABC为顶点的四边形为菱形,则C点坐标为

(3)在直线AB上找点D,使OAD的面积与((2)中菱形面积相等,则D点坐标为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠l=2,DEBC,ABBC,那么∠A=3吗?说明理由.

解:∠A=3,理由如下:

DEBC,ABBC(已知)

∴∠DEB=ABC=90° (   

∴∠DEB+(   )=180°

DEAB (   

∴∠1=A(   

2=3(   

∵∠l=2(已知)

∴∠A=3(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AMBN,∠A=60°.点P是射线AM上一动点(与点A不重合),BCBD分别平分∠ABP和∠PBN,分别交射线AM于点CD

1)求∠CBD的度数;

2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.

3)当点P运动到使ACB=∠ABD时,直接写出ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB30°,∠DAE45°,∠BAC=∠D90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAEα(0°α180°)

(1)α   度时,ADBC,并在图3中画出相应的图形;

(2)在旋转过程中,试探究∠CAD与∠BAE之间的关系;

(3)当△ADE旋转速度为5°/秒时,且它的一边与△ABC的某一边平行(不共线)时,直接写出时间t的所有值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-3x与双曲线y在第四象限内的部分相交于点Aa,-6),将这条直线向

上平移后与该双曲线交于点M,且△AOM的面积为3.

(1)求k的值;

(2)求平移后得到的直线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,点ECD上,点FAB上,连接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如图1,求证:四边形DFBE是平行四边形;

(2)如图2,若ECD的中点,连接GH,在不添加任何辅助线的情况下,请直接写出图2中以GH为边或以GH为对角线的所有平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为(  )

A. B. C. D. 1

查看答案和解析>>

同步练习册答案