精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数yax2+bx+ca≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0,其中正确的命题是( )

A. ①②③B. ①③C. ①④D. ①③④

【答案】B

【解析】

根据抛物线经过(10),确定a+b+c的符号;根据对称轴方程确定b2a的关系;根据抛物线与x轴的一个交点和对称轴确定另一个交点,得到ax2+bx+c0的两根;根据a0b0c0b2a,确定a2b+c的符号.

解:∵yax2+bx+c经过(10),

a+b+c0,①正确;

b2a,②错误;

yax2+bx+c经过(10),对称轴为x=﹣1

yax2+bx+cx轴的另一个交点为(﹣30),

ax2+bx+c0的两根分别为﹣31,③正确;

a0b0c0b2a

a2b+c=﹣ab+c0,④错误,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】AC为半径是8的圆周上两动点,点B的中点,以线段BABC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究同一坐标系中系数互为倒数的正、反比例函数的图象性质小明根据学习函数的经验,对这两个函数当时的图象性质进行了探究设函数图象的交点为A下面是小明的探究过程:

1)如图所示,若已知A的坐标为,则B点的坐标为______

2)若A的坐标为P点为第一象限内双曲线上不同于点B的任意一点.

①设直线PAx轴于点M,直线PBx轴于点求证:

证明过程如下:设,直线PA的解析式为

解得

所以,直线PA的解析式为______

请把上面的解答过程补充完整,并完成剩余的证明.

②当P点坐标为时,判断的形状,并用k表示出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A,B两点的坐标;

(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;

(3)在以AB为直径的M相切于点E,CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,若AF=4,AB=7.

(1)求DE的长度;

(2)试猜想:直线BE与DF有何位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲,在等边三角形ABC内有一点P,且PA=2,PBPC=1,求∠BPC度数的大小和等边三角形ABC的边长.

解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.

(1)△PPB 三角形,△PPA 三角形,∠BPC °;

(2)利用△BPC可以求出△ABC的边长为

如图丙,在正方形ABCD内有一点P,且PABPPC=1;

(3)求∠BPC度数的大小;

(4)求正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形, ,垂足为的延长线相交于,,连接

(1)如图,求证:四边形是菱形;

(2)如图,连接,,在不添加任何辅助线的情况下,直接写出图中所有面积等于的面积的钝角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线ACBD相交于点OOAB是等边三角形.

1)求证:ABCD为矩形;

2)若AB4,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线x轴正半轴于点A、点B,交y轴于点C, 直线y=-x+6经过点B、点C

1)求抛物线的解析式

2)点Dx轴下方的抛物线上,连接DBDC,点D的横坐标为tBCD的面积为S,求St的函数关系式,并直接写出自变量t的取值范围

查看答案和解析>>

同步练习册答案