【题目】已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接连接AD,BC、点H为BC中点,连接OH.
(1)如图1所示,求证:OH=AD且OH⊥AD;
(2)将△COD绕点O旋转到图2所示位置时,线段OH与AD又有怎样的关系,证明你的结论;
(3)请直接写出线段OH的取值范围.
【答案】(1)见解析;(2)结论:OH=AD,OH⊥AD.理由见解析;(3)1≤OH≤3.
【解析】
(1)只要证明△AOD≌△BOC,即可解决问题;
(2)延长HO交AD于K.延长OH到M,使得HM=OH,连接BM,CM..由△AOD≌△OBM(SAS)即可解决问题;
(3)如图2中,在△OBM中求得2≤OM≤6即可解答
(1)如图1中,设AD交OH于K.
∵△AOB和△COD均为等腰直角三角形,
∴OA=OB,OC=OD,∠AOB=90°,
∴△AOD≌△BOC(SAS),
∴BC=AD,∠OBC=∠DAC,
∵BH=HC,∠BOC=90°,
∴OH=BH=CH= BC,
∴OH= AD,∠HBO=∠HOB,
∵∠HOB+∠AOH=90°,
∴∠OAD+∠AOH=90°,
∴∠AKO=90°,
∴AD⊥OH.
(2)结论:OH= AD,OH⊥AD.
理由:延长HO交AD于K.延长OH到M,使得HM=OH,连接BM,CM.
∵BH=CH,OH=HM,
∴四边形BOCM是平行四边形,
∴OC=BM,OC∥BM,
∴∠MBO+∠BOC=180°,
∵∠AOB=∠COD=90°,
∴∠AOD+∠BOC=180°,
∴∠OBM=∠AOD,
∵OA=OB,
∴△AOD≌△OBM(SAS),
∴OM=AD,∠BOM=∠DAD,
∵∠BOM+∠AOK=90°,
∴∠OAD+∠AOK=90°,
∴∠OKA=90°,
∴OH⊥AD.
(3)如图2中,在△OBM中,∵OB=OA=4,BM=OC=2,
∴4﹣2≤OM≤4+2,
∴2≤OM≤6,
∵OM=2OH,
∴1≤OH≤3.
科目:初中数学 来源: 题型:
【题目】国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.
(1)今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从地出发,匀速驶向地,甲车以的速度行驶后,乙车才沿相同路线行驶,乙车先到达地并停留后,再以原速沿原路返回,直至与甲车相遇.在此过程中,两车之间的距离与乙车行驶时间之间的函数关系如图所示,下列说法错误的是( )
A.乙车的速度是B.
C.点的坐标是D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数=(≠0)图象如图所示,下列结论:①>0;②=0;③当≠1时,>;④>0;⑤若=,且≠,则=2.其中正确的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A→C→B运动,点Q从点A出发以vcm/s的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示,有下列结论:①v=1;②sinB=;③图象C2段的函数表达式为y=﹣x2+x;④△APQ面积的最大值为8,其中正确有( )
A.①②B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.
(1)如图1,连接DE,AF.若DE⊥AF,求t的值;
(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.
成绩等级 | 频数(人) | 频率 |
优秀 | 15 | 0.3 |
良好 | ||
及格 | ||
不及格 | 5 |
根据以上信息,解答下列问题
(1)被测试男生中,成绩等级为“优秀”的男生人数为 人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为 %;
(2)被测试男生的总人数为 人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为 %;
(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注,某市一研究机构为了了解岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了如下尚不完整的频数分布表、频数分布走访图和扇形统计图:
组别 | 年龄段 | 频数(人数) |
第1组 | 5 | |
第2组 | ||
第3组 | 35 | |
第4组 | 20 | |
第5组 | 15 |
(1)请直接写出、的值及扇形统计图中第3组所对应的圆心角的度数;
(2)请补全上面的频数分布直方图;
(3)假设该市现有岁的市民300万人,问第4组年龄段关注本次大会的人数经销商有多少万人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com