精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

【答案】(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).

【解析】

(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点AB关于原点对称,得出B点坐标,即可得出k的值;

(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.

(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即56.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为56,由此可得出关于P点横坐标的方程,即可求出P点的坐标.

(1)∵点A在正比例函数y=2x上,

把x=4代入正比例函数y=2x,

解得y=8,点A(4,8),

把点A(4,8)代入反比例函数y=,得k=32,

(2)∵点A与B关于原点对称,

B点坐标为(﹣4,﹣8),

由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;

(3)∵反比例函数图象是关于原点O的中心对称图形,

∴OP=OQ,OA=OB,

四边形APBQ是平行四边形,

SPOA=S平行四边形APBQ×=×224=56,

设点P的横坐标为m(m>0且m≠4),

得P(m,),

过点P、A分别做x轴的垂线,垂足为E、F,

点P、A在双曲线上,

∴SPOE=SAOF=16,

若0<m<4,如图,

∵SPOE+S梯形PEFA=SPOA+SAOF

∴S梯形PEFA=SPOA=56.

(8+)(4﹣m)=56.

m1=﹣7+3,m2=﹣7﹣3(舍去),

P(﹣7+3,16+);

若m>4,如图,

∵SAOF+S梯形AFEP=SAOP+SPOE

∴S梯形PEFA=SPOA=56.

×(8+)(m﹣4)=56,

解得m1=7+3,m2=7﹣3(舍去),

∴P(7+3,﹣16+).

<>点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两家体育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定价5元,乒乓球拍每副定价20元.现两家商店都搞促销活动,甲店每买一副球拍赠一盒乒乓球;乙店按九折优惠.某班级需购球拍4副,乒乓球x盒(x≥4).

1)若在甲店购买付款(元),在乙店购买付款(元),分别写出与x的函数关系式;

2)买30盒乒乓球时,在哪家商店购买合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、DBFa于点F,DEa于点E,若DE=8,BF=5,则EF的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且tanEAC=,则BE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点BC的坐标分别为(﹣20),(﹣12).

1)请在如图所示的网格中根据上述点的坐标建立对应的直角坐标系;(只要画图,不需要说明)

2)在(1)中建立的平面直角坐标系中,先画出△ABC关于y轴对称的图形△A1B1C1,再画出△A1B1C1关于x轴对称的图形△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、A不重合),过点CAB的垂线交⊙O于点D,连接OD,过点BOD的平行线交⊙O于点E,交CD的延长线于点F.

(1)若∠F=30°,请证明E 的中点;

(2)若AC=,求BEEF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用直尺和圆规作一个角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=AOB的依据是( )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,使ΔABCΔADC成立的条件是(

A.AB=AD,∠B=DB.AB=AD,∠ACB=ACD

C.BC=DC,∠BAC=DACD.AB=AD,∠BAC=DAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DAC上一点,EBD上一点,∠A=CBD=DCE.

(1)求证:△ABC∽△CDE;

(2)若BD=3DE,试求的值.

查看答案和解析>>

同步练习册答案