精英家教网 > 初中数学 > 题目详情

【题目】为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:

价格

进价(元/件)

m

m+20

售价(元/件)

150

160

如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.

(1)m的值;

(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?

【答案】(1)m=100(2)两种方案

【解析】

(1)用总价除以单价表示出购进童装的数量,根据两种童装的数量相等列出方程求解即可;

(2)设购进甲种童装x件,表示出乙种童装(200-x)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据童装的件数是正整数解答;设总利润为W,表示出利润,求得最值即可.

(1)根据题意可得:

解得:m=100,

经检验m=100是原方程的解;

(2)设甲种童装为x件,可得:

解得:98≤x<100,

因为x取整数,

所以有两种方案:

方案一:甲98,乙102;

方案二:甲99,乙101;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠A=CADBE于点FBCBE,点EDC在同一条直线上.

(1)判断ABCD的位置关系,并说明理由;

(2)若∠ABC=120°,求∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OM平分∠AOBON平分∠BOC

(1)若∠AOB90°,∠BOC30°,则∠MON_____

(2)若∠AOBα,∠BOCβ,其它条件不变,则∠MON______

(3)OC运动到∠AOB内部时,其余条件不变,请你画出图形并猜想∠MON与∠AOB、∠BOC的数量关系式,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,且ABCDEFAD上两点,CEADBFAD.若CEaBFbEFc,则AD的长为(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AECD交于点M,AEBC交于点N.

(1)求证:AE=CD;

(2)求证:AE⊥CD;

(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有   (请写序号,少选、错选均不得分).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】饺子(如图1)源于古代的角子,饺子原名“娇耳”,相传是我国医圣张仲景首先发明的,距今已有一千八百多年的历史了.有一句民谣叫“大寒小寒,吃饺子过年.”包饺子时,将面团揉成长条状,后用刀切或用手揪成一个个小面团,这些小面团就是箕(jì)子(如图2).擀皮时,将箕子压扁后擀成圆形面皮,一个面箕子可以擀出一个饺子皮(如图3),就可以用来包饺子了.

中国北方,尤其是在京、津地区流行的一种面食﹣合子(如图4),含有团团圆圆的美好寓意.用两层饺子皮在中间加一层馅,就可以包成一个合子.北方有风俗曰:初一的饺子、初二的面、初三的合子往家转.

小亮的妈妈喜爱研究中华美食,自己动手经常给家人做出色香味俱佳的食品.妈妈在传承古人的做法的同时,也进行了加工创新.在每次包饺子临近结束时,如果饺子馅少了,饺子皮多了,这时妈妈会停止包饺子,改包合子,这样既不浪费食材,家人既吃到了饺子又吃到了合子.

这天,妈妈从厨房走到书房,对正在学习的小亮说:“妈妈刚才在厨房包饺子,结果面和多了,做了88个饺子箕,最后包了饺子和合子一共是81个.”

小亮说:“妈妈,我能用刚刚学到的列一元一次方程解应用题的知识和方法得出您包的饺子和合子分别是多少.”

请你写出小亮同学的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OAOB相交于MN两点,则以下结论:(1PM=PN恒成立;(2OM+ON的值不变;(3)四边形PMON的面积不变;(4MN的长不变,其中正确的个数为(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块直角三角板DEF放置在ABC上,三角板DEF的两条直角边DEDF恰好分别经过点BCABC中,∠A=50°,求∠DBA+DCA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.
(1)抛物线的对称轴为x=(用含m的代数式表示);
(2)若AB∥x轴,求抛物线的表达式;
(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp , yp),yp≤2,求m的取值范围.

查看答案和解析>>

同步练习册答案