【题目】如图,已知OM平分∠AOB,ON平分∠BOC.
(1)若∠AOB=90°,∠BOC=30°,则∠MON=_____;
(2)若∠AOB=α,∠BOC=β,其它条件不变,则∠MON=______;
(3)当OC运动到∠AOB内部时,其余条件不变,请你画出图形并猜想∠MON与∠AOB、∠BOC的数量关系式,并说明理由.
【答案】(1)60°;(2)(α+β);(3)∠MON=(∠AOB﹣∠BOC).
【解析】
(1)根据角平分线的定义求得∠MOB,∠BON,再根据角的和差关系即可求解;
(2)根据角平分线的定义求得∠MOB,∠BON,再根据角的和差关系即可求解;
(3)根据角平分线的定义求得∠MOB,∠BON,再根据角的和差关系即可求解.
解:(1)∵∠AOB=90°,∠BOC=30°,OM,ON分别平分∠AOB,∠BOC,
∴∠MOB=∠AOB=45°,∠BON=∠BOC=15°,
∴∠MON=∠MOB+∠BON=60°.
故答案为:60°;
(2)∵∠AOB=α,∠BOC=β,OM,ON分别平分∠AOB,∠BOC,
∴∠MOB=∠AOB=α,∠BON=∠BOC=β,
∴∠MON=∠MOB+∠BON=(α+β).
故答案为:(α+β);
(3)∵OM,ON分别平分∠AOB,∠BOC,
∴∠MOB=∠AOB,∠CON=∠BOC,
∴∠MON=∠MOB﹣∠CON=(∠AOB﹣∠BOC).
科目:初中数学 来源: 题型:
【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.
(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为 .
(1)分别求出线段AP、CB的长;
(2)如果OE=5,求证:DE是⊙O的切线;
(3)如果tan∠E= ,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,为厉行节能减排,倡导绿色出行,某公司拟在我市甲、乙两个街道社区投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型.
成本单价 (单位:元) | 投放数量 (单位:辆) | 总价(单位:元) | |
A型 | x | 50 | 50x |
B型 | x+10 | 50 |
|
成本合计(单位:元) | 7500 |
问题1:看表填空
如图2所示,本次试点投放的A、B型“小黄车”共有 辆;用含有x的式子表示出B型自行车的成本总价为 ;
问题2:自行车单价
试求A、B两型自行车的单价各是多少?
问题3:投放数量
现在该公司采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(1, ),点B(2,0),P为线段OB上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积最大值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列解题过程,然后解答问题
解方程:|x+3|=2.
解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1
当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5
所以原方程的解是x=﹣1,x=﹣5
(1)解方程:|3x﹣2|﹣4=0;
(2)探究:当b为何值时,方程|x﹣2|=b ①无解;②只有一个解;③有两个解.
(3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列判断错误的是( )
A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD
C. 如果∠BAD+∠D=180°,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接“六一”国际儿童节,某童装品牌专卖店准备购进甲、乙两种童装,这两种童装的进价和售价如下表:
价格 | 甲 | 乙 |
进价(元/件) | m | m+20 |
售价(元/件) | 150 | 160 |
如果用5000元购进甲种童装的数量与用6000元购进乙种童装的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种童装共200件的总利润(利润=售价﹣进价)不少于8980元,且甲种童装少于100件,问该专卖店有哪几种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“作三角形一边中线”的尺规作图过程. 已知:△ABC(如图1),求作:BC边上的中线AD.
作法:如图2,
(i)分别以点B,C为圆心,AC,AB长为半径作弧,两弧相交于P点;
(ii)作直线AP,AP与BC交于D点.
所以线段AD就是所求作的中线.
请回答:该作图的依据是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com