精英家教网 > 初中数学 > 题目详情
6.一张圆形纸片,小芳进行了如下连续操作:
(1)将圆形纸片左右对折,折痕为AB,如图(2).
(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3).
(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4).
(4)连结AE、AF、BE、BF,如图(5).
经过以上操作,小芳得到了以下结论:
①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S四边形AEBF:S扇形BEMF=3$\sqrt{3}$:π.
以上结论正确的有(  )
A.1个B.2个C.3个D.4个

分析 根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形30°角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=$\frac{\sqrt{3}}{2}$r,则可得EF=2EN=$\sqrt{3}$r,即可得S四边形AEBF:S扇形BEMF=($\frac{1}{2}$×$\sqrt{3}$r×2r):($\frac{120}{360}$πr2)=3$\sqrt{3}$:π,④正确.

解答 解:∵纸片上下折叠A、B两点重合,
∴∠BMD=90°,
∵纸片沿EF折叠,B、M两点重合,
∴∠BNF=90°,
∴∠BMD=∠BNF=90°,
∴CD∥EF,故①正确;
根据垂径定理,BM垂直平分EF,
又∵纸片沿EF折叠,B、M两点重合,
∴BN=MN,
∴BM、EF互相垂直平分,
∴四边形MEBF是菱形,故②正确;
∵ME=MB=2MN,
∴∠MEN=30°,
∴∠EMN=90°-30°=60°,
又∵AM=ME(都是半径),
∴∠AEM=∠EAM,
∴∠AEM=$\frac{1}{2}$∠EMN=$\frac{1}{2}$×60°=30°,
∴∠AEF=∠AEM+∠MEN=30°+30°=60°,
同理可求∠AFE=60°,
∴∠EAF=60°,
∴△AEF是等边三角形,故③正确;
设圆的半径为r,则EN=$\frac{\sqrt{3}}{2}$r,
∴EF=2EN=$\sqrt{3}$r,
∴S四边形AEBF:S扇形BEMF=($\frac{1}{2}$×$\sqrt{3}$r×2r):($\frac{120}{360}$πr2)=3$\sqrt{3}$:π,故④正确;
综上所述,结论正确的是①②③④共4个.
故选D.

点评 本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为3.27×109

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.当x=2时,不论k取任何实数,函数y=k(x-2)+3的值为3,所以直线y=k(x-2)+3一定经过定点(2,3);同样,直线y=k(x-3)+x+2一定经过的定点为(3,5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在Rt△ABC中,∠ACB=90°.AB=13,CD∥AB.点E为射线CD上一动点(不与点C重合),联结AE,交边BC于点F,∠BAE的平分线交BC于点G.
(1)当时CE=3,求S△CEF:S△CAF的值;
(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;
(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为8或2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图是一座人行天桥引桥部分的示意图,上桥通道AD∥BE,水平平台DE和地面AC平行,立柱BC和地面AC垂直,∠A=37°.已知天桥的高度BC为4.8米,引桥的水平跨度AC为8米,求水平平台DE的长度.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.(1)如图甲,AD丄BC于点D,BE丄AC于点E,AD与BE相交于点F,且BF=AC.求证:DF=DC.
(2)如图乙,已知一次函数与反比例函数的图象交于点A(-4,一2)和B(a,4)
    ①求反比例函数的解析式和点B的坐标;
    ②根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列方程中,是一元一次方程的为(  )
A.3x+2y=6B.x2+2x-1=0C.$\frac{x}{3}$$-\frac{1}{2}$=$\frac{3}{2}$xD.$\frac{3}{x}$-3=$\frac{1}{2}$

查看答案和解析>>

同步练习册答案