【题目】某电器超市销售每台进价分别为190元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1770元 |
第二周 | 4台 | 10台 | 3060 元 |
(进价、售价均保持不变,利润=销售收入一进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5300元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.
【答案】(1)A、B两种型号电风扇的销售单价分别为240元、210元;(2)超市最多采购A种型号电风扇10台时,采购金额不多于5300元;(3)在(2)的条件下超市不能实现利润1400元的目标,理由见详解.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1770元,4台A型号10台B型号的电扇收入3060元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5300元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得:,
解得:.
答:A、B两种型号电风扇的销售单价分别为240元、210元;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.
依题意得:190a+170(30﹣a)≤5300,
解得:a≤10.
答:超市最多采购A种型号电风扇10台时,采购金额不多于5300元;
(3)依题意有:(240﹣190)a+(210﹣170)(30﹣a)=1400,
解得:a=20,
∵a≤10,
∴在(2)的条件下超市不能实现利润1400元的目标.
科目:初中数学 来源: 题型:
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF.
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.
(1)求证:AD=AF;
(2)求证:BD=EF;
(3)试判断四边形ABNE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.
(1)求证:BE=CF;
(2)如果AB=7,AC=5,求AE,BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则折痕AE的长为( )
A.cmB. cmC.12cmD.13 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,线段m,用尺规作图作菱形ABCD,使它的边长为m,一个内角等于其具体步骤如下:
作;
以点A为圆心,线段m长为半径画弧,交AE于点B,交AF于点D;
__________;
连接BC、DC,则四边形ABCD为所作的菱形第步应为
A. 分别以点B、D为圆心,以AF长为半径画弧,两弧交于点C
B. 分别以点E、F为圆心,以AD长为半径画弧,两弧交于点C
C. 分别以点B、D为圆心,以AD长为半径画弧,两弧交于点C
D. 分别以点E、F为圆心,以AF长为半径画弧,两弧交于点C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为 度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com