【题目】如图,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.
(1)求证:△ADE∽△BEF.
(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.
【答案】(1)证明见解析;(2)1.
【解析】试题分析:(1)这两个三角形中,已知的条件有∠DAE=∠EBF=90°,
那么只要得出另外一组对应角相等即可得出两三角形相似,因为∠ADE+∠DEA=90°.
而∠AED+∠FEB=90°,因此∠ADE=∠FEB.那么就构成了两三角形相似的条件;
(2)可用表示出BE的长,然后根据(1)中△ADE∽△BEF.可得出关于的比例关系式,然后就能得出一个关于的函数关系式.根据函数的性质即可得出的最大值及相应的的值.
试题解析:(1) 四边形ABCD是正方形,
∴∠DAE=∠EBF=90°,
∴∠ADE+∠DEA=90°.
又EF⊥DE,
∴∠AED+∠FEB=90°,
∴∠ADE=∠FEB.
∴△ADE∽△BEF.
(2) 由(1)△ADE∽△BEF,AD=4,BE=4-x,得,得y= (-x2+4x)
= [-(x-2)2+4]=- (x-2)2+1,
∴当x=2时,y有最大值,y的最大值为1.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=70°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C.若C'C∥AB,则∠BAB'=______°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形 ABCD 是正方形,点 E,H 分别在 BC,AB 上,点 G 在 BA 的延长线上, 且 CE=AG,DE⊥CH 于 F.
(1)求证:四边形 GHCD 为平行四边形.
(2)在不添加任何辅助线的情况下,请直接写出图中所有与∠ECF 互余的角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象经过点A(﹣3,6)、B(m,0)、C(3,0),并且m<3,D为抛物线的顶点.
(1)求b,c,m的值;
(2)设点P是线段OC上一点,点O是坐标原点,且满足∠PDC=∠BAC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=4,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.如图,已知⊙O的半径为5,则抛物线与该圆所围成的阴影部分(不包括边界)的整点个数是( )
A. 24 B. 23 C. 22 D. 21
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于点C,过点C的直线y=2x+b交x轴于点D,且⊙P的半径为,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个全等的直角三角形ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=∠FDE=60°,AC=1. 固定△ABC不动,将△DEF进行如下操作:
(1) 如图 (1),△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图(2),当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)如图(3),△DEF的F点固定在AB的中点,然后绕F点按顺时针方向旋转△DEF,使EF交在AC边上于M,FD交BC于N,若FM=x,FN=y,试求y关于x的函数关系式。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com