精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc0;②b2﹣4ac=0;③a2;④4a﹣2b+c0.其中正确结论的个数是(

A.1 B.2 C.3 D.4

【答案】B

【解析】解:抛物线开口向上,

a0,

对称轴在y轴左边,

b0,

抛物线与y轴的交点在x轴的上方,

c+22,

c0,

abc0,

结论①不正确;

二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,

∴△=0,

即b2﹣4a(c+2)=0,

b2﹣4ac=8a0,

结论②不正确;

对称轴x=﹣=﹣1,

b=2a,

b2﹣4ac=8a,

4a2﹣4ac=8a,

a=c+2,

c0,

a2,

结论③正确;

对称轴是x=﹣1,而且x=0时,y2,

x=﹣2时,y2,

4a﹣2b+c+22,

4a﹣2b+c0.

结论④正确.

综上,可得

正确结论的个数是2个:③④.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,CD⊙O的直径,CD⊥AB,垂足为点FAO⊥BC,垂足为点EAO=1

1)求∠C的大小;

2)求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人买了相同数量的信封和信笺,甲每发一封信都只用1张信笺,乙每发一封信都要用3张信笺,结果甲用掉了所有的信封,但余下50张信笺,而乙用掉了所有的信笺,但余下50个信封.

(1)求甲乙两人各买的信封和信笺的数量分别为多少?

(2)若甲乙两人每发出一封信需邮费5元,求甲乙各用去多少元邮费?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大家见过形如x+yz,这样的三元一次方程,并且知道x3y4z7就是适合该方程的一个正整数解,法国数学家费尔马早在17世纪还研究过形如x2+y2z2的方程.

1)请写出方程x2+y2z2的两组正整数解:   

2)研究直角三角形和勾股数时,我国古代数学专著(九章算术)给出了如下数:am2n2),bmncm2+n2),(其中mnmn是奇数),那么,以abc为三边的三角形为直角三角形,请你加以验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点A(﹣30),点Bx轴上异于点A一动点,设Bx0),以AB为边在x轴的上方作正方形ABCD

1)如图(1),若点B10),则点D的坐标为 

2)若点EAB的中点,∠DEF90°,且EF交正方形外角的平分线BFF

如图(2),当x0时,求证:DEEF

若点F的纵坐标为y,求y关于x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCD的边AB上的动点,EFDEBC于点F.

(1)求证:ADEBEF.

(2)设正方形的边长为4,AE=x,BF=y.x取什么值时,y有最大值?并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等边三角形,A与点D的坐标分别是A(4,0),D(10,0).

(1)如图,当点C与点O重合时,求直线BD的表达式;

(2)如图,C从点O沿y轴向下移动,当以点B为圆心,AB为半径的By轴相切(切点为C),求点B的坐标;

(3)如图,C从点O沿y轴向下移动,当点C的坐标为C(0,-2),ODB的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线试纸y=ax2+bx+cx轴交于点A,C,与y轴交于点B.已知点A坐标为(80),点B(08),点D为(03),tanDCO=,直线AB和直线CD相交于点E.

求抛物线的解析式,并化成y=a(x-m)2+h的形式;

设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得SABP=SABG.

M为直线AB上的一点,过点Mx轴的平行线分别交直线ABCD于点MN,连结DMDN,是否存在点M,使得DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有   人,扇形统计图中基本了解部分所对应扇形的圆心角为   度;

(2)请补全条形统计图;

(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到了解基本了解程度的总人数.

查看答案和解析>>

同步练习册答案