精英家教网 > 初中数学 > 题目详情

【题目】ABC是等边三角形,A与点D的坐标分别是A(4,0),D(10,0).

(1)如图,当点C与点O重合时,求直线BD的表达式;

(2)如图,C从点O沿y轴向下移动,当以点B为圆心,AB为半径的By轴相切(切点为C),求点B的坐标;

(3)如图,C从点O沿y轴向下移动,当点C的坐标为C(0,-2),ODB的正切值.

【答案】(1)y=x-.2B的坐标为(8,-4).3.

【解析】试题分析:(1)先根据等边三角形的性质求出B点的坐标,直接运用待定系数法就可以求出直线BD的解析式。

2)作BE⊥x轴于E,就可以得出∠AEB=90°,由圆的切线的性质就可以而出B的纵坐标,由直角三角形的性质就可以求出B点的横坐标,从而得出结论。

3)以点B为圆心,AB为半径作⊙B,交y轴于点CE,过点BBF⊥CEF,连接AE.根据等边三角形的性质、圆心角与圆周角之间的关系及勾股定理就可以点B的坐标,作BQ⊥x轴于点Q,根据正切值的意义就可以求出结论。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数 ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程组,则下列结论中:①当时,方程组的解是;②当的值互为相反数时,;③不存在一个实数使得;④若,则正确的个数有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc0;②b2﹣4ac=0;③a2;④4a﹣2b+c0.其中正确结论的个数是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(为实景侧视图,为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架ABCD(均与水平面垂直),再将集热板安装在AD.为使集热板吸热率更高,公司规定:AD与水平线夹角为θ1,且在水平线上的射影AF1.4 m.现已测量出屋顶斜面与水平面夹角为θ2,并已知tan θ1=1.082,tan θ2=0.412.如果安装工人已确定支架AB高为25 cm,求支架CD的高.(结果精确到1 cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.如图,已知⊙O的半径为5,则抛物线与该圆所围成的阴影部分(不包括边界)的整点个数是(

A. 24 B. 23 C. 22 D. 21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点D为直角三角形ABC的斜边AB上的中点,DEABACE, EBCD,线段CDBF交于点F.tanA=,=_____.如图2,点D为直角三角形ABC的斜边AB上的一点,DEABACE, EBCD;线段CDBF交于点F.tanA=,则=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知直线的解析式是并且与轴、轴分别交于AB两点.一个半径为1.5的⊙C圆心C从点(01.5)开始以每秒0.5个单位的速度沿着轴向下运动当⊙C与直线相切时则该圆运动的时间为(  )

A. 3秒或6 B. 6 C. 3 D. 6秒或16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为A(-10),B30),现同时将点AB分别向上平移2个单位,再向右平移1个单位,分别得到点AB的对应点CD,连接ACBDCD

1)求点CD的坐标及四边形ABDC的面积S四边形ABDC(提示:平行四边形的面积=×)

2)在y轴上是否存在一点P,连接PAPB,使SPAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.

3)点P是线段BD上的一个动点,连接PCPO,当点PBD上移动时(不与BD重合)的值是否发生变化,若不变请求出该值,若会变请并请说明理由.

查看答案和解析>>

同步练习册答案