精英家教网 > 初中数学 > 题目详情

【题目】在每个小正方形的边长均为1的7×7网格图中,格点上有A,B,C,D,E五个定点,如图所示,一个动点P从点E出发,绕点A逆时针旋转90°,之后该动点继续绕点B,C,D逆时针90°后回到初始位置,点P运转路线的总长是 . (结果保留π)

【答案】5π
【解析】解:

以点A为圆心的弧长为: =π, 以点B为圆心的弧长为: = π,以点C为圆心的弧长为: =π,以点D为圆心的弧长为: = π,所以,点P运转路线的总长=π+ π+π+ π=5π.
所以答案是:5π.
【考点精析】掌握弧长计算公式和旋转的性质是解答本题的根本,需要知道若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD中,点E、F分别在边DC、AD上,且AE⊥BF于G.

(1)求证:BF=AE;
(2)如图2,当点E在DC延长线上,点F在AD延长线上时,(1)中结论是否成立?(直接写结论)

(3)在图2中,若点M、N、P、Q分别为四边形AFEB四条边AF、EF、EB、AB的中点,且AF:AD=4:3,求S四边形MNPQ:S正方形ABCD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:

(1)四边形OCED是菱形.

(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中, AE、BF分别平分∠DAB和∠ABC交CD于点E、F.AE、BF交于点G.

(1)求证AE⊥BF

(2)判断DE和CF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知四边形ABCDD=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行吗?试写出推理过程;

(2)DACEAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,ADBCB=90°,且AD=12cmAB=8cmDC=10cm,若动点PA点出发,以每秒2cm的速度沿线段AD向点D运动;动点QC点出发以每秒3cm的速度沿CBB点运动,当P点到达D点时,动点PQ同时停止运动,设点PQ同时出发,并运动了t秒,回答下列问题:

1BC= cm

2)当t为多少时,四边形PQCD成为平行四边形?

3)当t为多少时,四边形PQCD为等腰梯形?

4)是否存在t,使得DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某经销商销售一种圆盘,圆盘的半径x(cm),圆盘的售价y与x成正比例,圆盘的进价与x2成正比例,售出一个圆盘的利润是P(元).当x=10时,y=80,p=30.(利润=售价﹣进价).
(1)求y与x满足的函数关系式;
(2)求P与x满足的函数关系式;
(3)当售出一个圆盘所获得的利润是32元时,求这个圆盘的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.

(1)判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.

查看答案和解析>>

同步练习册答案