【题目】如图,矩形中,,,连接.以点为圆心,以任意长为半径作弧,交,分别于点,:分别以点,为圆心,以大于长为半径作弧,两弧相交于点:作射线,交于点.则的面积为_________.
科目:初中数学 来源: 题型:
【题目】对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016江苏省镇江市) (2016镇江)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数(x>0)的图象交于点B(4,b).
(1)b= ;k= ;
(2)点C是线段AB上的动点(于点A、B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求△OCD面积的最大值;
(3)将(2)中面积取得最大值的△OCD沿射线AB方向平移一定的距离,得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上(如图2),则点D′的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图1,在中,,点是射线上任意一点,是等边三角形,且点在的内部,连接.探究线段与之间的数量关系.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
当点与点重合时(如图2),请你补全图形.由的度数为_______________,点落在_______________,容易得出与之间的数量关系为_______________
当是的平分线时,判断与之间的数量关系并证明
当点在如图3的位置时,请你画出图形,研究三点是否在以为圆心的同一个圆上,写出你的猜想并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为的抛物线与交轴分别于点,(点在点的左侧),与交轴交于点.已知直线的解析式为.
(1)求抛物线的解析式:
(2)若以点为圆心的圆与相切,求的半径;
(3)在轴上是否存在一点,使得以,,三点为顶点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在Rt△ABC中,∠C=90°,按以下步骤作图:
①以点A为圆心,以小于AC的长为半径作弧,分别交AC、AB于点M,N;
②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点O;
③作射线OA,交BC于点E,若CE=6,BE=10.
则AB的长为( )
A.11B.12C.18D.20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点.甲从中山路上点出发,骑车向北匀速直行;与此同时,乙从点出发,沿北京路步行向东匀速直行.设出发时,甲、乙两人与点的距离分别为、.已知、与之间的函数关系如图②所示.
(1)求甲、乙两人的速度;
(2)当取何值时,甲、乙两人之间的距离最短?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,,点E,F分别是BC,AD的中点.
(1)求证:;
(2)当与满足什么数量关系时,四边形是正方形?请证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com