【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b<0;其中正确的个数有( )
A.2B.3C.4D.5
【答案】A
【解析】
利用抛物线开口方向得到,利用抛物线的对称轴方程得到,利用抛物线与轴的交点位置得到,则可对①进行判断;利用抛物线与轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与轴的另一个交点坐标为,则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用得到,则可对⑤进行判断.
解:抛物线开口向上,
,
抛物线的对称轴为直线,
,
抛物线与轴的交点在轴下方,
,
,所以①错误;
抛物线与轴有2个交点,
△,所以②正确;
抛物线的对称轴为直线,抛物线与轴的一个交点坐标为,
抛物线与轴的另一个交点坐标为,
,所以③正确;
点到直线的距离比点到直线的距离小,
而抛物线开口向上,
;所以④错误;
,
,所以⑤错误.
综上所述:正确的有②③,共2个.
故选:.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过A (0,3),B (4,3)两点,与x轴交于点E,F,以AB为边作矩形ABCD,其中CD边经过抛物线的项点M,点P是抛物线上一动点(点P不与点A,B重合),过点P作y轴的平行线1与直线AB交于点G,与直线BD交于点H,连接AF交直线BD于点N.
(1)求该抛物线的解析式以及顶点M的坐标;
(2)当线段PH=2GH时,求点P的坐标;
(3)在抛物线上是否存在点P,使得以点P,E,N,F为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2022年北京冬奥会吉祥物“冰墩墩”以熊猫为原型进行设计创作,北京冬残奥会吉祥物“雪容融”则以中国标志性符号的灯笼为创意进行设计创作“冰墩墩”和“雪容融”是一个非常完美的搭:配和组合,是中国文化和奥林匹克精神又一次完美的结合莉莉有“冰墩墩”和“雪容融”的纪念邮票各2张(如图),这4张邮票背面完全相同,莉莉想给好友小婷和小华各送一张纪念邮票,她先让小婷从这4张邮票中随机抽取一张,然后,再让小华从剩下的3张中随机抽取一张.
(1)小婷抽到“冰墩墩”的纪念邮票的概率是__________.
(2)利用树状图或列表法求小婷和小华均抽到“雪容融”的纪念邮票的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,直线与轴,轴分别交于点,点,抛物线经过点,点和点,并与直线交于另一点.
(1)求抛物线的解析式;
(2)如图 2,点为轴上一动点,连接,当时,求点 的坐标;
(3)如图 3,将抛物线平移,使其顶点是坐标原点,得到抛物线;将直线向下平移经过坐标原点,交抛物线于另一点.点,点是上且位于 第一象限内一动点,交于点,轴分别交于,试说明:与存在一个确定的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙A与菱形ABCD的边BC相切于点E,与边AB相交于点F,连接EF.
(1)求证:CD是⊙A的切线;
(2)若⊙A的半径为2,tan∠BEF=,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.
(1)求证:MD=MC;
(2)若⊙O的半径为5,AC=4,求MC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,半径OA丄OB,点D在OA或OA的延长线上(不与点O,A重合),直线BD交⊙O于点C,过C作⊙O的切线交直线OA于点P.
(1)如图(1),点D在线段OA上,若∠OBC=15°, 求∠OPC的大小;
(2)如图(2),点D在OA的延长线上,若∠OBC=65°,求∠OPC的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com