17£®Èçͼ£¬³¤·½ÐÎOABCµÄ±ßOAÔÚxÖáÕý°ëÖáÉÏ£¬±ßOCÔÚyÖáÕý°ëÖáÉÏ£¬BµãµÄ×ø±êΪ£¨1£¬3£©£®³¤·½ÐÎO'A'BC'Êdz¤·½ÐÎOABCÈÆBµãÄæÊ±ÕëÐýתµÃµ½µÄ£®O'µãÇ¡ºÃÔÚxÖáµÄÕý°ëÖáÉÏ£¬O'C'½»ABÓÚµãD£®
£¨1£©ÇóÖ¤£ºO'A=O'A'£¬²¢ÇóµãO'µÄ×ø±ê£®£¨Ìáʾ£ºÁ¬½ÓBO¡¢BO'£©
£¨2£©Çó±ßC'O'ËùÔÚÖ±ÏߵĽâÎöʽ£®
£¨3£©ÑÓ³¤BAµ½MʹAM=1£¬ÔÚ£¨2£©ÖÐÇóµÃµÄÖ±ÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¡÷POMÊÇÒÔÏß¶ÎOMΪֱ½Ç±ßµÄÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Á¬½ÓOB£¬O¡äB£¬¸ù¾ÝÐýתµÄÐÔÖʿɵÃOB=O¡äB£¬ÔÙ¸ù¾Ý¾ØÐεÄÐÔÖÊBA¡ÍOA£¬ÔÙ¸ù¾ÝµÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÄÐÔÖʿɵÃAO=AO¡ä£¬È»ºó¸ù¾ÝµãBµÄ×ø±êÇó³öAOµÄ³¤¶È£¬Ôٵõ½AO¡äµÄ³¤¶È£¬µãO¡äµÄ×ø±ê¼´¿ÉµÃµ½£»
£¨2£©ÉèµãDµÄ×ø±êÊÇ£¨1£¬a£©£¬±íʾ³öO¡äDµÄ³¤¶È£¬È»ºóÀûÓù´¹É¶¨ÀíÁÐʽÇó³öaµÄÖµ£¬´Ó¶øµÃµ½µãDµÄ×ø±ê£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨ÁÐʽ¼´¿ÉÇó³öÖ±ÏßC¡äO¡äµÄ½âÎöʽ£»
£¨3£©¸ù¾ÝAM=1¿ÉµÃ¡÷AOMÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬È»ºó·Ö¢ÙPMÊÇÁíÒ»Ö±½Ç±ß£¬¡ÏPMA=45¡ã£¬¢ÚPOÊÇÁíÒ»Ö±½Ç±ß£¬¡ÏPOA=45¡ãÁ½ÖÖÇé¿öÁÐʽ½øÐмÆËã¼´¿ÉµÃ½â£®

½â´ð ½â£º£¨1£©Èçͼ£¬Á¬½ÓOB£¬O¡äB£¬ÔòOB=O¡äB£¬
¡ßËıßÐÎOABCÊǾØÐΣ¬
¡àBA¡ÍOA£¬
¡àAO=AO¡ä£¬
¡ßBµãµÄ×ø±êΪ£¨1£¬3£©£¬
¡àOA=1£¬
¡àAO¡ä=1£¬
¡àµãO¡äµÄ×ø±êÊÇ£¨2£¬0£©£»

£¨2£©ÉèµãDµÄ×ø±êΪ£¨1£¬a£©£¬ÔòAD=a£¬
¡ßµãBµÄ×ø±êÊÇ£¨1£¬3£©£¬
¡àO¡äD=3-a£¬
ÔÚRt¡÷ADO¡äÖУ¬AD2+AO¡ä2=O¡äD2£¬
¡àa2+12=£¨3-a£©2£¬
½âµÃa=$\frac{4}{3}$£¬
¡àµãDµÄ×ø±êΪ£¨1£¬$\frac{4}{3}$£©£¬
ÉèÖ±ÏßC¡äO¡äµÄ½âÎöʽΪy=kx+b£¬
Ôò$\left\{\begin{array}{l}{2k+b=0}\\{k+b=\frac{4}{3}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{4}{3}}\\{b=\frac{8}{3}}\end{array}\right.$£¬
¡à±ßC¡äO¡äËùÔÚÖ±ÏߵĽâÎöʽ£ºy=-$\frac{4}{3}$x+$\frac{8}{3}$£»

£¨3£©¡ßAM=1£¬AO=1£¬ÇÒAM¡ÍAO£¬
¡à¡÷AOMÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¢ÙPMÊÇÁíÒ»Ö±½Ç±ßʱ£¬¡ÏPMA=45¡ã£¬
¡àPA=AM=1£¬µãPÓëµãO¡äÖØºÏ£¬
¡àµãPµÄ×ø±êÊÇ£¨2£¬0£©£¬
¢ÚPOÊÇÁíÒ»Ö±½Ç±ß£¬¡ÏPOA=45¡ã£¬ÔòPOËùÔÚµÄÖ±ÏßΪy=x£¬
¡à$\left\{\begin{array}{l}{y=-\frac{4}{3}x+\frac{8}{3}}\\{y=x}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=\frac{8}{7}}\\{y=\frac{8}{7}}\end{array}\right.$£¬
¡àµãPµÄ×ø±êΪP£¨2£¬0£©»ò£¨$\frac{8}{7}$£¬$\frac{8}{7}$£©£®

µãÆÀ ±¾ÌâÊǶÔËıßÐεÄ×ۺϿ¼²é£¬Ö÷ÒªÓоØÐεÄÐÔÖÊ£¬µÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÄÐÔÖÊ£¬È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬¹´¹É¶¨ÀíµÈ£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶÈÖеȣ¬Ðè×Ðϸ·ÖÎöϸÐļÆË㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÒ»´Îº¯Êýy=kx+bµÄͼÏóÈçͼËùʾ£º
£¨1£©º¯ÊýÖµyËæxµÄÔö´ó¶ø¼õС£»
£¨2£©µ±x£¼3ʱ£¬y£¾0£»
£¨3£©µ±x£¼0ʱ£¬yµÄȡֵ·¶Î§ÊÇy£¾2£»
£¨4£©¸ù¾ÝͼÏóд³öÒ»´Îº¯ÊýµÄ½âÎöʽΪy=-$\frac{2}{3}$x+2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÖÐѧÉúÆïµç¶¯³µÉÏѧµÄÏÖÏóÔ½À´Ô½Êܵ½Éç»áµÄ¹Ø×¢£¬Îª´ËijýÌå¼ÇÕßСÀîËæ»úµ÷²éÁ˳ÇÇøÈô¸ÉÃûÖÐѧÉú¼Ò³¤¶ÔÕâÖÖÏÖÏóµÄ̬¶È£¨Ì¬¶È·ÖΪ£ºA£ºÎÞËùν£»B£º·´¶Ô£»C£ºÔ޳ɣ©²¢½«µ÷–˽á¹û»æÖƳÉͼ¢ÙºÍͼ¢ÚµÄͳ¼ÆÍ¼£¨²»ÍêÕû£©Çë¸ù¾ÝͼÖÐÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣮
£¨1£©´Ë´Î³éÑùµ÷–ËÖУ¬¹²µ÷–ËÁË200ÃûÖÐѧÉú¼Ò³¤£»
£¨2£©½«Í¼¢Ù²¹³äÍêÕû£»
£¨3£©³Ö¡°Ô޳ɡ±Ì¬¶ÈËù¶ÔÓ¦µÄÔ²ÐĽǵĶÈÊýΪ54¡ã£»
£¨4£©¸ù¾Ý³éÑùµ÷²é½á¹û£¬ÇëÄã¹À¼ÆÎÒÊгÇÇø80000ÃûÖÐѧÉú¼Ò³¤ÖÐÓжàÉÙÃû¼Ò³¤³Ö·´¶Ô̬¶È£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¼ÆËãÌâ
£¨1£©-8+6
£¨2£©-20+£¨-5£©-£¨-18£©
£¨3£©2-2¡Â$\frac{1}{5}$¡Á5
£¨4£©-1.25¡Á0.4¡Â£¨-$\frac{2}{5}$£©¡Á£¨-8£©
£¨5£©10¡Á£¨-$\frac{2}{11}$£©-2¡Á$\frac{2}{11}$+£¨-3£©¡Á£¨-$\frac{2}{11}$£©
£¨6£©-42¡Á£¨$\frac{1}{6}$-$\frac{3}{14}$+$\frac{2}{7}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®½â·½³Ì×飺
£¨1£©$\left\{\begin{array}{l}{x+y=5}\\{x-y=-3}\end{array}\right.$                    
£¨2£©$\left\{\begin{array}{l}\frac{x}{3}-\frac{y}{2}=1\\ 3y=-2£¨x+1£©\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¡÷ABNºÍ¡÷ACMλÖÃÈçͼËùʾ£¬AB=AC£¬¡Ï1=¡Ï2£¬¡ÏM=¡ÏN£®ÇóÖ¤£ºAD=AE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺$\sqrt{27}$+$\sqrt{45}$-$\sqrt{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®°ÑÏÂÁи÷Êý·Ö±ðÌîÈëÏàÓ¦µÄ¼¯ºÏÀ
£¨-2£©2¡¢0¡¢-3.14¡¢-£¨-11£©¡¢$\frac{22}{7}$¡¢-4$\frac{1}{3}$¡¢15%¡¢$\frac{2}{¦Ð}$¡¢0.$\stackrel{•}{3}$¡¢|-2$\frac{3}{5}$|£¬10.01001000100001¡­
·Ç¸ºÕûÊý¼¯ºÏ£º{£¨-2£©2¡¢0¡¢-£¨-11£©£¬¡­}
Õý·ÖÊý¼¯ºÏ£º{$\frac{22}{7}$¡¢15%£¬0.$\stackrel{•}{3}$¡¢|-2$\frac{3}{5}$|£¬  ¡­}
ÎÞÀíÊý¼¯ºÏ£º{$\frac{2}{¦Ð}$¡¢10.01001000100001¡­£¬ ¡­}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®·Ö±ð»­³öÈçͼͼÐεĶԳÆÖᣬÓм¸Ìõ»­¼¸Ìõ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸