【题目】如图,在平面直角坐标系中,将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,点坐标为,点的坐标为,一次函数的图象经过点B、C,反比例函数的图象也经过点.
(1)求反比例函数和一次函数的关系式;
(2)观察图象直接写出图象在第二象限时,的解集.
【答案】(1); (2)-3<x<0
【解析】
(1)过点B作BD⊥x轴于点D.根据AAS证明△BCD≌△CAO,从而求得点B的坐标,利用待定系数法可求出反比例函数的关系式;
(2)在第二象限内,找出一次函数值y=kx+b落在反比例函数图象下方的部分对应的x的取值范围即可.
解:(1)过B作BD⊥x轴,垂足为D,
在△BDC和△COA中
∵∠BDC=∠COA=90°
∵∠DCB+∠ACO=∠CAO+∠ACO
∴∠DCB=∠CAO
∵BC=AC,
∴△BDC≌△COA
∴DC=AO=2,BD=CO=1
∴点B的坐标是(-3,1)
将点B(-3,1)代入得
解得m=-3
∴反比例函数的表达式是
将B(-3,1)和点C(-1,0)代入y=kx+b得
∴
解得
∴一次函数的表达式是
(2)在第二象限内,的解集是-3<x<0
科目:初中数学 来源: 题型:
【题目】人们常常在室内摆放一些绿色植物,这样做不仅增加了温馨舒适度,还有助于提高室内空气的质量.前年某小区为更好地提高住户的居住感受,为已入住的住户购置A、B两个品种的绿色植物共900盆.其中,A品种每盆20元,B品种每盆30元
(1)已知该小区前年购置这900盆绿色植物共花费23000元,请分别求出已购置的A、B品种的数量;
(2)今年该小区决定再次为已入住的住户购置绿色植物C、D两个新品种.已知C品种今年每盆的价格比A品种前年的价格优惠a%,D品种今年每盆的价格比B品种前年的价格优惠.由于小区入住率的提高,今年需要购置C品种的数量比A品种前年购置的数量增加了,购置D品种的数量比B品种前年购置的数量增加了a%,于是今年的总花费比前年增加了.求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(-5,0)和点B(1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)点P是抛物线上A,D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G.过点G作GF⊥x轴于点F.当矩形PEFG的周长最大时,求点P的横坐标;
(3)如图2,连接AD,BD,点M在线段AB上(不与A,B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样的点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求二次函数的图象如图所示,其对称轴为直线,与轴的交点为、,其中,有下列结论:①;②;③;④;⑤;其中,正确的结论有( )
A.5B.4C.3D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等腰Rt△ABC中,∠A=90°,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=8,AB=20,请直接写出△PMN面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的点A'处,若AO=OB=2,则图中阴影部分面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,以为坐标原点建立直角坚标系,使点在轴正半轴上,,,点为边的中点,抛物线的顶点是原点,且经过点
(1)填空:直线的解析式为 ;抛物线的解析式为 .
(2)现将该抛物线沿着线段移动,使其顶点始终在线段上(包括点,),抛物线与轴的交点为,与边的交点为;
①设的面积为,求的取值范围;
②是否存在这样的点,使四边形为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.
请根据图中信息,回答下列问题:
(1)这次抽样调查中共调查了近视学生 人;
(2)请补全条形统计图;
(3)扇形统计图中10-12岁部分的圆心角的度数是 ;
(4)据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列图形都是由大小相同的小正方形按一定规律组成的,其中第1个图形的周长为4,第2个图形的周长为10,第3个图形的周长为18,…,按此规律排列,回答下列问题:
(1)第5个图形的周长为 ;
(2)第个图形的周长为 ;
(3)若第个图形的周长为180,则 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com