【题目】下列图形都是由大小相同的小正方形按一定规律组成的,其中第1个图形的周长为4,第2个图形的周长为10,第3个图形的周长为18,…,按此规律排列,回答下列问题:
(1)第5个图形的周长为 ;
(2)第个图形的周长为 ;
(3)若第个图形的周长为180,则 .
【答案】(1)40;(2);(3)12
【解析】
(1)首先要理解图形的变化规律是依次由边长为1、2、3……的正方形拼接而成的,进而可得到所组成的图形的底边长与右侧的高的变化规律,进而得解;
(2)根据(1)中得到的规律列式计算即可;
(3)利用(2)中的代数式列出方程求解即可.
(1)根据图形的变化规律可知:
第1个图形的周长为(1+1)×2=4,
第2个图形的周长为(1+2+2)×2=10,
第3个图形的周长为(1++2+3+3)×2=18,
∴第5个图形的周长为:;
故答案为:40;
(2)由(1)可得:
第n个图形的周长为:
故答案为:;
(3)若第n个图形的周长为180,
则有:
解得:,(舍去)
故答案为:12.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,点坐标为,点的坐标为,一次函数的图象经过点B、C,反比例函数的图象也经过点.
(1)求反比例函数和一次函数的关系式;
(2)观察图象直接写出图象在第二象限时,的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
如果函数满足:对于自变量的取值范围内的任意,,
(1)若,都有,则称是增函数;
(2)若,都有,则称是减函数.
例题:证明函数是减函数.
证明:设,
.
∵,∴,.∴.即.
∴.∴函数()是减函数.
根据以上材料,解答下面的问题:
己知函数(),
(1)计算:_______,_______;
(2)猜想:函数()是_______函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点P从点B出发,沿BC以每秒2个单位长度的速度向终点C运动,同时点Q从点C出发,沿折线以每秒5个单位长度的速度运动,到达点A时,点Q停止1秒,然后继续运动.分别连结PQ、BQ.设的面积为S,点P的运动时间为秒.
(1)求点A与BC之间的距离.
(2)当时,求的值.
(3)求S与之间的函数关系式.
(4)当线段PQ与的某条边垂直时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:
售价(元/) | 20 | 30 | 40 |
日销售量() | 80 | 60 | 40 |
(1)求关于的函数解析式(不要求写出自变量的取值范围);
(2)为多少时,当天的销售利润 (元)最大?最大利润为多少?
(3)由于产量日渐减少,该商品进价提高了元/,物价部门规定该商品售价不得超过36元/,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+c的图象经过点A(﹣1,0),B(0,﹣3).
(1)求这个抛物线的解析式;
(2)抛物线与x轴的另一交点为C,抛物线的顶点为D,判断△CBD的形状;
(3)直线BN∥x轴,交抛物线于另一点N,点P是直线BN下方的抛物线上的一个动点(点P不与点B和点N重合),过点P作x轴的垂线,交直线BC于点Q,当四边形BPNQ的面积最大时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知函数的图像和反比例函数的在第一象限交于A点,其中点A的横坐标是1.
(1)求反比例函数的解析式;
(2)把直线平移后与轴相交于点B,且,求平移后直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A. ①②都对 B. ①②都错 C. ①对②错 D. ①错②对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com